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Abstract

In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid
peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on
peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well
as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum,
a component of complete Freund’s adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR)
and/or toll like receptor (TLR) agonists could activate neutrophils, leading to opioid peptide release and inhibition of
inflammatory pain. In complete Freund’s adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of
the paw were quantified (Hargreaves and Randall-Selitto methods, respectively). Withdrawal time to heat was decreased
following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e.
Met-enkephalin, b-endorphin) antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat
neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and
formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as
determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as
well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptide
release in vitro and increased inflammatory pain in vivo while TLR 2/4 did not appear to be involved. In summary,
mycobacteria activate FPR on neutrophils, resulting in tonic secretion of opioid peptides from neutrophils and in a decrease
in inflammatory pain. Future therapeutic strategies may aim at selective FPR agonists to boost endogenous analgesia.
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Introduction

The four cardinal signs of inflammation are rubor (redness),

calor (hyperthermia), dolor (pain/hyperalgesia) and functio laesa

(impaired function). Bacteria and their components play a critical

role in eliciting pain since inflammatory pain is significantly

decreased in animals raised under germ free conditions [1].

Experimentally, inflammation can be elicited by local injection of

heat inactivated Mycobacterium butyricum (‘‘complete Freund’s

adjuvant’’) resulting in spontaneous activity of nociceptive Ad
and C nerve fibers [2,3]. Pain is elicited by proalgesic mediators

including proinflammatory cytokines (tumor necrosis factor-a,

interleukin-1b), bradykinin, and protons [2,4]. Bacteria and their

components are recognized by pattern recognition receptors

including toll like receptors (TLR) as well as formyl peptide

receptors (FPR). Peptidoglycan (a TLR-2 agonist), lipopolysac-

charide (a TLR-4 agonist) and R-848 (a TLR-7 agonist) can elicit

pain [5–7]. Furthermore, pain is decreased in TLR-4 deficient

mice with bacterial cystitis [8] as well as in TLR-2 or -4 deficient

mice with neuropathic lesions [9,10]. In contrast to these

pronociceptive effects of TLR agonists, FPR agonists were shown

to decrease pain induced by formalin, but the underlying

mechanism remained unclear [11].

The intensity of inflammatory pain is not only dependent on

proalgesic mediators, but is counteracted by endogenous analgesic

mediators including opioid peptides [12]. Both neutrophils and

monocytes contain opioid peptides (Met-enkephalin and b-

endorphin) and they are the predominant leukocyte subpopula-

tions during the first 4 days of complete Freund’s adjuvant-

induced inflammation [13–15]. Opioid peptides are released, bind

to opioid receptors on peripheral sensory neurons and induce

analgesia (i.e. decrease of inflammatory pain). Releasing agents

such as hormones (e.g. corticotrophin releasing hormone [16]) or

chemokines (CXCL2/3) [17,18] trigger opioid release from
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leukocytes in vitro and induce opioid-mediated analgesia in vivo. In

the experimental model, peripheral endogenous opioid analgesia

requires injection of these releasing agents at the site of

inflammation. This effect is short lasting (max. 10 min) making

this approach not attractive for the clinical setting. Interestingly,

however, both clinical [19] and experimental studies [20] indicate

that opioid peptides might be continuously released at the site of

surgery or experimental inflammation and decrease inflammatory

pain. At present, it is unclear how continuous release is regulated.

It is tempting to speculate that Mycobacterium butyricum, as a

component of complete Freund’s adjuvant, triggers opioid peptide

release from leukocytes and, thereby, induces analgesia. Myco-

bacteria activate both TLR [21,22] and FPR [23] that are

expressed on neutrophils and monocytes/macrophages [24–26].

Of the ten known TLR, mycobacteria predominantly interact with

TLR-2 and TLR-4 through lipoproteins and lipomannans

[21,27]. TLR and/or FPR stimulation of neutrophils induce L-

selectin shedding, enhanced CD11b expression and/or release of

reactive oxygen species [28–31]. FPRs are coupled to Gi proteins

[24] and receptor activation triggers intracellular signaling

through phospholipase C, diacylglycerol, inositol phosphates and

Ca2+ mobilization from intracellular stores, as well as activation of

phosphoinositol-3 kinase (PI3K) [32]. In contrast, TLR activation

induces coupling to an adapter protein, MyD88, and stimulation

of several intrinsic kinases including interleukin-1 receptor

accessory protein kinase leading to NF-kB activation.

In this study we examined whether heat inactivated Mycobac-

terium butyricum triggers opioid peptide release from rat and human

neutrophils and monocytes and whether this requires FPR and/or

TLR activation. We further studied the downstream signaling

mechanisms of receptor activation. Finally, we tested the in vivo

functional relevance of FPR agonist- and of Mycobacterium butyricum-

induced opioid peptide release as an endogenous pathway of pain

control in complete Freund’s adjuvant-induced inflammation. We

found that Mycobacterium butyricum induced opioid peptide release

from neutrophils through FPR but not TLR stimulation.

Mycobacterium-triggered opioid peptide release required intra-

cellular calcium mobilization and PI3K activation. In vivo this

mechanism decreased inflammatory pain mainly in early inflam-

mation.

Results

Inflammatory pain is attenuated by tonic opioid peptide
release from neutrophils

Intraplantar complete Freund’s adjuvant injection containing

Mycobacterium butyricum resulted in a significant decrease in thermal

nociceptive thresholds (paw withdrawal latency) in comparison to

noninflamed contralateral paws indicating inflammatory pain

(paw withdrawal latency in inflamed paws 8.962.4 s vs. paw

withdrawal latency in noninflamed contralateral paws

19.362.0 s). To assess whether pain after intraplantar complete

Freund’s adjuvant injection was affected by infiltrating neutrophils

at the site of inflammation, systemic neutrophil depletion was

performed. Consistent with previous findings, neutrophils in the

circulation and at the site of complete Freund’s adjuvant-induced

paw inflammation were reduced by .90% while monocytes/

macrophages were unaffected [14,17]. Neutropenia was associated

with significantly lower thermal nociceptive thresholds (paw

withdrawal latency; Fig. 1A). Since neutrophils were previously

shown to contain and release Met-enkephalin and b-endorphin

upon stimulation (e.g. by CXCR2 ligands) [17], we examined

whether tonic opioid release attenuates inflammatory pain.

Intraplantar injection of naloxone, an opioid receptor antagonist

(Fig. 1B), anti-Met-enkephalin or anti-b-endorphin antibodies

(Fig. 1C, D) significantly reduced thermal nociceptive thresholds

for up to 30 min (data not shown). No changes were seen after

subcutaneous application of the same dose of naloxone, anti-Met-

enkephalin or anti-b-endorphin antibody into a skin fold of the

back, indicating the absence of systemic effects (data not shown).

Taken together, these data suggest that neutrophils tonically

secrete opioid peptides and, thereby, significantly reduce inflam-

matory pain.

Mycobacteria can trigger opioid peptide release from
neutrophils but not from monocytes

We hypothesized that Mycobacterium butyricum might directly

trigger opioid peptide release. Incubation of human and rat

neutrophils with Mycobacterium butyricum resulted in dose-dependent

release of Met-enkephalin (Fig. 2A, B). In contrast, no release of

Met-enkephalin after Mycobacterium butyricum stimulation was

observed in human blood monocytes following short term

(7 min; Fig. 2C) or long term stimulation (up to 2 h; data not

shown) although monocytes express FPR [33,34] and TLR [35].

However, human monocytes were able to secrete Met-enkephalin

after stimulation with ionomycin, a calcium ionophore, as a

positive control. Similarly, human and rat neutrophils released b-

endorphin upon stimulation with Mycobacterium butyricum but

human monocytes only secreted b-endorphin after ionomycin

stimulation (Fig. S1).

Stimulation of FPR but not of TLR-2 or TLR-4 elicits opioid
peptide secretion from neutrophils in vitro and opioid-
mediated analgesia in vivo

Since mycobacteria activate TLR-2 and TLR-4 on neutrophils

[22,27,28], we hypothesized that agonist stimulation of these

receptors might induce opioid peptide release. In line with

previous studies [26], both TLR-2 and TLR-4 were expressed

on human neutrophils as measured by flow cytometry (Fig. 2D).

Author Summary

Inflammation of peripheral tissue can be caused by
bacteria and is frequently accompanied by pain. Pain
severity depends on the balance of enhancing (proalgesic)
and decreasing (analgesic) mediators. Local endogenous
pain control involves the release of opioid peptides from
immune cells at the site of inflammation. These opioid
peptides bind to opioid receptors on peripheral nerves
and inhibit transmission of nociceptive impulses. We
hypothesized that bacteria can directly stimulate immune
cells to release opioid peptides and thereby decrease pain.
In a rat model, inoculation of the paw with heat-
inactivated Mycobacterium butyricum led to local inflam-
mation and pain responses. Nociceptive thresholds were
further decreased (i.e. pain was enhanced) following
immune cell (i.e. neutrophil) depletion, local injection of
anti-opioid peptide antibodies or opioid receptor antag-
onists. Immune cells recognize bacteria by toll-like and/or
formyl peptide receptors. Previous research indicated that
mycobacteria enhance nociceptive responses via toll like
receptors-2 and -4. We now demonstrate that mycobac-
teria also activate formyl peptide receptors on neutrophils
leading to opioid peptide release and the inhibition of
such responses. Since bacteria can simultaneously induce
the generation of pro- and analgesic mediators, our results
might be a further explanation for differences in pain
between individual patients following bacterial infections.

Mycobacteria and Local Opioid-Mediated Analgesia
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However, no Met-enkephalin release was seen after stimulation of

TLR-2 with peptidoglycan [36] or stimulation of TLR-4 with

lipopolysaccharide [36] in human or rat neutrophils (Fig. 2F, G, I,

J). Mycobacteria also contain formylated peptides activating FPR

[23,37]. In accordance with previous studies [38] FPR were

expressed on human blood neutrophils (Fig. 2E). Incubation of

human and rat neutrophils with formyl-Met-Leu-Phe (fMLP), an

FPR agonist, resulted in dose-dependent release of Met-enkeph-

alin (Fig. 2H, K). No release of Met-enkephalin was observed after

fMLP stimulation of human monocytes (data not shown). Similar

results were obtained for release of b-endorphin from human and

rat neutrophils (Fig. S1).

We next evaluated whether fMLP can induce analgesia in rats

with complete Freund’s adjuvant -induced hindpaw inflammation.

Complete Freund’s adjuvant injection resulted in inflammatory

pain measured by a significant decrease in both mechanical (paw

pressure threshold) and thermal nociceptive thresholds (paw

withdrawal latency) in comparison to noninflamed contralateral

paws (Fig. 3A, C). fMLP injected intraplantarly into inflamed

hindpaws elicited significant and dose-dependent analgesia as

indicated by a rise in mechanical and thermal nociceptive

thresholds (Fig. 3A, C). fMLP-induced analgesia peaked at

5 min, was still elevated after 10 min and returned to baseline

after 20 min (data not shown). Higher doses of fMLP were needed

to reverse thermal nociceptive threshold in inflamed hind paws

(Fig. 3A).

FPR is expressed on neutrophils as well as monocytes/

macrophages [34]. We detected FPR expression on CD45+RP-

1+ neutrophils as well as CD45+ED1+ macrophages isolated from

the inflamed paw (Fig. 3D). fMLP-induced analgesia was abolished

by selective systemic neutrophil depletion (Fig. 3E), by peripherally

selective blockade of mu-opioid receptors (naloxone, Fig. 3B, F,

CTOP, Fig 3G) or by neutralization of opioid peptides (i.e. anti

Met-enkephalin antibodies, Fig. 3B, H). Blockade of delta-opioid

receptors partially but significantly reduced nociceptive thresholds

after fMLP injection (naltrindole, Fig. 3G).

To verify the involvement of FPR we employed two FPR

inhibitors, N-t-Boc-Phe-D-Leu-Phe-D-Leu-Phe (Boc-FLFLF) and

cyclosporine H [31,39,40]. Boc-FLFLF dose-dependently reduced

fMLP-FITC binding to human neutrophils (Fig. 4A). In parallel,

fMLP-triggered elevation of intracellular calcium in human

neutrophils was inhibited by preincubation with Boc-FLFLF

(Fig. 4B) or cyclosporine H (data not shown). Met-enkephalin

release from human neutrophils was completely blocked by

preincubation with 10 mM Boc-FLFLF (Fig. 4C) and was reduced

by 62 and 72% after preincubation with 10 or 100 mM

cyclosporine H, respectively (Table 1). In rat neutrophils, higher

doses of FPR inhibitors were necessary. The fMLP-induced Met-

enkephalin release was inhibited by 69% using 100 mM Boc-

FLFLF (Fig. 4D) and by 44% using 100 mM cyclosporine H

(Table 1). To test these FPR antagonists in vivo we intraplantarly

injected rats with complete Freund’s adjuvant and either

antagonist together with fMLP. Both FPR antagonists dose-

dependently blocked fMLP-induced analgesia (Fig. 4E, Table 1).

Mycobacteria stimulate FPR-dependent intracellular
calcium mobilization and PI3K-dependent release of
opioid peptides

Mycobacterium butyricum triggered intracellular Ca2+ mobilization

in FPR -, but not in mock-transfected human embryonic kidney

(HEK) 293 cells (Fig. 5A, B). This was blocked by preincubation

with the FPR antagonist Boc-FLFLF (Fig. 5C) or cyclosporine H

(data not shown). Similar changes were observed in human

neutrophils (Fig. 5D–F). Acute receptor desensitization was

observed because stimulation of human neutrophils with fMLP

almost completely abolished subsequent stimulation with Mycobac-

terium butyricum (Fig. 5F).

We further examined the role of TLR and FPR in

mycobacterial stimulation of opioid peptide release. No change

in Mycobacterium butyricum-triggered opioid peptide release was seen

after blockade with single or combined anti-TLR-2 and anti-TLR-

4 (Fig. 6A) while the addition of two FPR antagonists, Boc-FLFLF

and cyclosporine H, resulted in an 80% and 74% reduction of

Met-enkephalin release, respectively (Fig. 6B and Table 2).

Activation of neutrophils leads to the translocation of primary

granules to the plasma membrane to allow for release [18,41].

Unstimulated neutrophils exhibited a homogeneous cytoplasmic

granular staining for Met-enkephalin (Fig. 6C). Following

stimulation with Mycobacterium butyricum, large aggregates of Met-

enkephalin-containing granules formed in submembranous re-

gions and overall staining was significantly reduced as a sign of

degranulation (Fig. 6D). Preincubation with Boc-FLFLF inhibited

Figure 1. Neutrophils attenuate inflammatory pain by local
opioid peptide release. [A] In a rat model, inflammation was induced
by intraplantar injection of heat-inactivated Mycobacterium butyricum
(complete Freund’s adjuvant). Prior to induction of inflammation, rats
were pretreated with i.v. anti-neutrophil serum (open triangles). Control
animals received non-immune rabbit serum (filled triangle). Two hours
after complete Freund’s adjuvant inoculation thermal nociceptive
thresholds (i.e. paw withdrawal latency) were significantly decreased
in neutropenic rats (n = 6–8; * p,0.05, t-test). [B, C] To examine the role
of endogenous opioids in local inflammatory pain control, rats with
complete Freund’s adjuvant-induced inflammation were intraplantarly
injected with the opioid receptor antagonist naloxone (0.56 ng, control
solvent only; open and filled circle respectively; baseline, BL [B]) (n = 9–
14), with an anti-opioid peptide antibody (i.e. anti-Met-enkephalin,
1.25 mg, or anti-b-endorphin, 2 mg) or with control IgG; open and filled
squares, respectively [C, D]) and nociceptive thresholds were deter-
mined. Nociceptive thresholds were significantly decreased following
both treatments (* p,0.05 all one way ANOVA, Dunn’s method). Data
are presented as means6SEM.
doi:10.1371/journal.ppat.1000362.g001
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Mycobacterium butyricum-induced translocation of Met-enkephalin-

containing granules to the cell membrane (Fig. 6E).

Elevation of intracellular Ca2+ is required for opioid peptide

release [17]. FPR is known to signal through Gi proteins

stimulating phospholipase C leading to mobilization of Ca2+ from

intracellular stores and to activation of PI3K [24]. Both chelation

of intracellular calcium by BAPTA/AM (Fig. 6F) as well as

pretreatment with the PI3K inhibitors (LY294002 and wortman-

nin, Fig. 6H) prevented Mycobacterium butyricum-induced opioid

peptide release. In contrast, Mycobacterium butyricum-induced Met-

enkephalin release was independent of extracellular calcium

(Fig. 6G).

Blockade of FPR in vivo increased inflammatory pain by
inhibiting tonic opioid peptide release

Tonic opioid peptide release from neutrophils in vivo would

require that stimulation with Mycobacterium butyricum does not

completely empty all stores of opioid peptides after a single

stimulation. To test this we repeatedly stimulated neutrophils with

Mycobacterium butyricum in vitro. After the second stimulation with

Mycobacterium butyricum we detected the same amount of Met-

enkephalin in the supernatant (Fig. 7A). In addition, we compared

Met-enkephalin release after Mycobacterium butyricum with maximal

stimulation elicited by the calcium ionophore ionomycin.

Mycobacterium butyricum only mobilized 19% of the ionomycin-

induced Met-enkephalin release (data not shown).

Similar to human neutrophils, mycobacterium-triggered Met-

enkephalin release from rat neutrophils was unaltered by TLR-2/

4 blockade (Fig. 7B) but was inhibited by preincubation with Boc-

FLFLF by 49% (Fig. 7C) and with cyclosporine H by 41%

(Table 2).

To test whether formyl peptides might be involved in tonic

analgesia through the release of opioid peptides in vivo, we treated

rats with complete Freund’s adjuvant-induced inflammation with

intraplantar injection of Boc-FLFLF (Fig. 7D) or cyclosporine H

(Table 2) using optimal doses determined in prior dose response

experiments (Fig. 4E and Table 1). Both treatments significantly

lowered thermal nociceptive thresholds for up to 30 min indicating

increased inflammatory pain. Boc-FLFLF treatment significantly

reduced thermal nociceptive thresholds also after 12 and 24 h

complete Freund’s adjuvant inflammation (Fig. 7E). However, the

effect was less prominent after 24 h (1.6 s difference vs. 3.3 s

difference at 2 h of complete Freund’s adjuvant inflammation).

Basal nociceptive threshold progressively fell during inflammation

indicating that hyperalgesia increased over time (Fig. 7E).

Discussion

Bacteria have long been believed to trigger inflammatory pain

by activating immune cells of the innate immune system. In this

study, we demonstrate that bacteria simultaneously decrease pain

by stimulating tonic release of endogenous opioid peptides like

Met-enkephalin and b-endorphin at the site of inflammation. In

vitro, heat inactivated Mycobacterium butyricum triggers opioid peptide

release from neutrophils, but not from monocytes. This requires

activation of FPR as well as intracellular Ca2+ mobilization and

PI3K activation, while TLR-2 and -4 do not seem to be involved.

These pathways are relevant in vivo since pain increases if FPR are

blocked at the site of complete Freund’s adjuvant-induced

inflammation.

Local injection of Mycobacterium butyricum (i.e. complete Freund’s

adjuvant) induces inflammatory pain as demonstrated by a

decrease in thermal and mechanical nociceptive thresholds. The

thermal pain threshold is further decreased by prior systemic

neutrophil depletion (Fig. 1A). Intuitively, one would expect that

the removal of neutrophils reduces the inflammatory reaction.

However neutrophil depletion in CFA inflammation does not

significantly change paw volume or local prostaglandin E2

production but leads to a reduction in total IL-1ß content. Despite

the neutrophil depletion nociceptive thresholds were not decreased

[42]. Similarly, selective neutrophil recruitment by intraplantar

CXCL2/3 injection does not elicit signs of inflammation or

lowered nociceptive thresholds [42]. This suggests that neutrophils

contribute modestly to the inflammatory reaction and are more

important for the inhibition than the generation of pain. In

previous studies, neutrophils were shown to be the major opioid

peptide containing leukocyte population in early inflammation

(within 24 h of injection) while monocytes/macrophages are

predominant in later stages [13,14,17,18]. Opioid peptide release

requires a stimulus such as cold water swim [43] or intraplantar

injection of corticotrophin releasing hormone, cytokines (e.g.

interleukin-1) [44] or chemokines (CXCL2/3) [17,18]. Although

the resultant analgesia is potent, it only lasts for 5–10 min. Thus, it

has been an open question whether there is a biological role of this

system under basal inflammatory conditions. In line with previous

studies in postoperative pain in humans [19], we now demonstrate

that peripherally mediated opioid analgesia is active under basal

conditions in complete Freund’s adjuvant-induced inflammation.

Local injection of the opioid receptor antagonist naloxone, anti-

Met-enkephalin or anti-b-endorphin antibodies resulted in a

further decrease in thermal nociceptive thresholds and, thus,

enhanced inflammatory pain (Fig. 1B–D). These reductions were

detectable when measuring thermal (i.e. Hargreaves method) but

not mechanical nociceptive thresholds (i.e. Randall Selitto test)

presumably because of the limited sensitivity of the latter test (data

not shown). We next identified the molecular mechanisms

responsible for tonic opioid peptide release.

Complete Freund’s adjuvant contains heat inactivated Mycobac-

terium butyricum. In vitro, neutrophil but not monocyte stimulation

with Mycobacterium butyricum resulted in a significant and dose-

dependent release of Met-enkephalin (Fig. 2A–C). To further

delineate the molecular pathways, we first explored TLR-2 and

TLR-4, the major receptors transmitting the signals of mycobac-

teria [22,28]. Expression of TLR-2 and TLR-4 on neutrophils has

been shown on mRNA and protein levels [29,45] as well as

functionally through stimulation with lipopolysaccharide or

peptidoglycan [29,30,45]. We could not detect Met-enkephalin

or b-endorphin release after selective TLR activation (Fig. 2 and

Fig. S1) despite receptor expression. In line with the lack of opioid

peptide release after TLR-2 or TLR-4 stimulation, the Mycobac-

Figure 2. Opioid peptide release from neutrophils is triggered by mycobacteria and FPR agonists but not by TLR-2 or TLR-4
agonists. [A–C] Rat and human neutrophils as well as CD14+ human monocytes were incubated with heat-inactivated Mycobacterium butyricum
(Myco. but.), and Met-enkephalin (ENK) release was quantified by radioimmunoassay (n = 7–13 * p,0.05, one way RM ANOVA, Student-Newman-Keuls
Method). [D, E] Expression of TLR-2, TLR-4 [D] and FPR [E] was determined on human neutrophils by flow cytometry (dotted line: unstained control,
grey histogram: isotype control, black line: anti-TLR-2-PE, black histogram: fMLP-FITC or anti-TLR-4-PE). [F–H] Human (n = 7–16) and [I–K] rat
neutrophils (n = 7–21) were stimulated with the TLR-2 agonist peptidoglycan, the TLR-4 agonist lipopolysaccharide or the FPR agonist fMLP, and Met-
enkephalin (ENK) release was measured in the supernatant (* p,0.05; one way RM ANOVA, Student-Newman-Keuls Method). Data are presented as
means6SEM.
doi:10.1371/journal.ppat.1000362.g002
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Figure 3. Formyl peptides inhibit inflammatory pain through release of opioid peptides from neutrophils. [A, C] Rats received
intraplantar injections of fMLP into inflamed paws (2 h post complete Freund’s adjuvant: filled circles; noninflamed paw: open circles). Paw
withdrawal latency [A] or paw pressure thresholds [C] were determined 5–7 min after injections (n = 5–6, * p,0.05 one way ANOVA, Duncan’s and
Dunnett’s method, respectively as well as p,0.001 linear regression analysis for dose-dependency of fMLP-induced analgesia). [B] Two hours post
complete Freund’s adjuvant rats received intraplantar fMLP (3 ng) together with either control IgG (filled circles), antibody against Met-enkephalin
(open circles) or naloxone. Paw withdrawal latency was measured 5–7- min thereafter (baseline, BL; n = 6;* p,0.05 one way ANOVA, Duncan’s
method). [D] Subcutaneous paw tissue was analyzed for FPR expression by flow cytometry. Cells were first gated on CD45+ hematopoetic cells (left
panel) followed by gating on RP1-PE+ neutrophils (upper middle panel) or ED1-PE+ macrophages (lower middle panel). Staining with fMLP-FITC (solid
lanes) was analyzed in comparison to unstained controls (grey histograms) (right panel). [E] Systemic neutrophil depletion by intravenous injection of
anti-neutrophil serum 18 h before induction of inflammation (anti-neutrophil, open triangles; control: rabbit IgG, closed triangles; n = 6, * p,0.05 one
way RM ANOVA, Duncan’s method) abolished fMLP-induced analgesia. [F–H] Similarly, concomitant intraplantar injection of fMLP with either the
opioid receptor antagonist naloxone ([F] 0.56 ng, open diamond, control: solvent, filled diamond; n = 6, * p,0.05 one way ANOVA, Dunnett’s
method), CTOP ([G] 50 mg, filled triangles), NTI ([G] 20 mg, open circles; n = 6, * p,0.05 one way ANOVA, Student–Newman-Keuls) or anti–Met-
enkephalin antibody ([H] 1.25 mg open circles; control: rabbit IgG, filled circles; n = 4–5) resulted in significant inhibition of analgesia (* p,0.05 one
way ANOVA, Duncan’s method). All data are means6SEM.
doi:10.1371/journal.ppat.1000362.g003
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terium butyricum-induced release of Met-enkephalin could not be

blocked by single or combined TLR-2/4 blockade (Fig. 6A, 7B).

Antibodies against TLR-2 and -4, although widely used, have

mostly shown partial inhibitory effects [46–52]. Therefore, the

additional involvement of TLR cannot completely be excluded

and would have to be studied in TLR knockout mice. Other

studies demonstrated that TLR can induce production of reactive

oxygen species [29,30] and PI3K-dependent tumour necrosis

factor-a and CXCL2/3 secretion [53]. Costimulation with fungi

and TLR-4 agonists enhances secretion of primary granules,

whereas TLR-2 agonists increase tertiary granule secretion. In

contrast to our study, neutrophils were stimulated for 4 h, TLR

agonists were not tested in the absence of fungal products and the

TLR-2/4-induced increase in release was modest in this study

[54]. In line with these data, short term TLR stimulation (i.e.

minutes) in the absence of costimulators does not induce

substantial granule release from neutrophils [55]. Since opioid

peptides are stored in primary granules in neutrophils [18] and

can be released within minutes, our results are in accordance with

the current literature.

Mycobacteria contain formyl peptides [23], which are released

during bacterial lysis [25]. Activation of human neutrophils with

mycobacteria or fMLP induced a more than fivefold increase in

Met-enkephalin secretion (Fig. 2B and 2H, respectively). Both

fMLP- and Mycobacterium butyricum-induced opioid peptide release

was blocked by the specific FPR antagonists Boc-FLFLF (Fig. 4C,

6B) and cyclosporine H (Tables 1 and 2). Previous studies

delineated signaling requirements for fMLP-triggered release [24].

We now demonstrate that the same signaling pathways are

activated following mycobacterial stimulation. Specifically, we

found that mycobacteria and fMLP triggered intracellular Ca2+

mobilisation in neutrophils (Fig. 4D) and in HEK293 cells

transfected with human FPR but not in Mock-transfected cells

(Fig. 4B). Mycobacterium butyricum did not induce intracellular Ca2+

Figure 4. fMLP-induced opioid peptide release in vitro and analgesia in vivo are dependent on activation of the FPR. [A] FPR staining
of human neutrophils with fMLP-FITC (black histogram) is dose-dependently inhibited by the FPR antagonist Boc-FLFLF (Boc, dotted line: 0.1 mM, thin
black line: 1 mM, thick black line: 10 mM). The unstained control is shown in the gray histogram. [B] Neutrophils were loaded with Fura-2 and changes
in [Ca2+]i were analyzed after addition of fMLP (left panel) and after preincubation with Boc-FLFLF and subsequent stimulation with fMLP (right
panel). Boc-FLFLF also blocked the fMLP-triggered release of Met-enkephalin (ENK) from human [C] and rat [D] neutrophils (n = 5–9; both * p,0.05
one way RM ANOVA, Student-Newman-Keuls Method). [E] In vivo, intraplantar injection of Boc-FLFLF blocked fMLP-induced analgesia (0.3 ng fMLP)
in the inflamed paw (filled squares; noninflamed paws: open squares). Baseline hyperalgesia prior to fMLP injection is shown for comparison (n = 6; *
p,0.05 one way ANOVA, Duncan’s method, and p,0.001 linear regression analysis for dose-dependency of FPR blockage). Data are means6SEM.
doi:10.1371/journal.ppat.1000362.g004
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mobilisation if cells were pretreated with fMLP demonstrating

acute FPR desensitisation. Furthermore, opioid peptide release

was dependent on intracellular calcium mobilisation as well as

PI3K activation (Fig. 6F–H). Both are known to be downstream

signals of FPR but not TLR activation. To underline the in vivo

relevance of our findings we demonstrate that formyl peptides (i.e.,

fMLP) can induce analgesia in complete Freund’s adjuvant-

induced inflammation, mediated through mu- and delta opioid

receptors (Fig. 3B,G) and that local injection of FPR antagonists

significantly impairs local endogenous pain control (Fig. 7 and

Table 2). FPR mediated endogenous pain control was seen for up

to 24 h, but became less prominent because baseline thermal

nociceptive threshold decreased during the time course of

inflammation (Fig. 7E). This is consistent with the number of

infiltrating neutrophils in complete Freund’s adjuvant inflamma-

tion [15]. Constant recruitment of neutrophils from the circulation

as well as submaximal stimulation could account for the tonic

release of opioid peptides without FPR desensitisation. Indeed,

Table 1. Effect of the FPR antagonist cyclosporine H (CsH) on fMLP-induced Met-enkephalin release from neutrophils and on
fMLP-induced antinociception.

Opioid peptide release

Met-enkephalin [fmol/107

neutrophils] Control fMLP 1 mM CsH 10 mM fMLP 1 mM CsH 100 mM fMLP 1 mM

Human neutrophils 6666 309620* 158619*1 13464*1

Rat neutrophils 3365 207618* n.d. 13068*1

Pain Behaviour

Paw pressure threshold [g] Baseline fMLP 0.3 mg CsH 0.09 mg fMLP 0.3 mg CsH 0.9 mg fMLP 0.3 mg CsH 9 mg fMLP 0.3 mg

Inflamed 38.661.6 80.763.8 71.362.7 50.561.8" 60.461.8"

Noninflamed 67.662.2 71.461.5 71.461.4 70.762.8 69.162.2

*p,0.05 (one way repeated measures ANOVA, Student-Newman-Keuls Method) versus control medium.
1p,0.05 versus fMLP (human: n = 13–25, rat: n = 14–22; n.d. = not determined).
"p,0.05 (one way ANOVA, Duncan’s Method) versus fMLP (n = 6).
doi:10.1371/journal.ppat.1000362.t001

Figure 5. Mycobacterium butyricum-triggered intracellular calcium elevation is FPR dependent. Mock [A] or human FPR [B,C]
transfected HEK293 cells or human neutrophils [D–F] were loaded with Fura-2. Changes in [Ca2+]i were analyzed after addition of Mycobacterium
butyricum (Myco. but.) at 60 s in the presence [C, E] or absence [B,D] of 10 mM Boc-FLFLF (Boc). [F] Impact of fMLP stimulation on subsequent
stimulation with Mycobacterium butyricum in human neutrophils.
doi:10.1371/journal.ppat.1000362.g005
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Figure 6. Mycobacterium butyricum-induced opioid peptide release and translocation of Met-enkephalin-containing granules from
human neutrophils requires FPR stimulation, intracellular Ca2+ mobilization and PI3K activation. [A, B] Met-enkephalin release induced
by Mycobacterium butyricum (Myco. but. 0.66 mg/ml) was analyzed after preincubation with anti-TLR-2 and anti-TLR-4 ([A], anti-TLR2 or 4 both 10 mg/
ml, n = 10–12), or the FPR antagonist Boc-FLFLF ([B], Boc 10 mM; n = 7–8, * p,0.05, both one way RM ANOVA, Student-Newman-Keuls Method). [C–E]
Cytospins from freshly isolated human neutrophils previously incubated with Mycobacterium butyricum in the presence [F] or absence [E] of the FPR

Mycobacteria and Local Opioid-Mediated Analgesia
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only around 20% of the total opioid peptide content from

neutrophils was secreted during the first simulation, and repetitive

stimulation of neutrophils allowed for repeated release of Met-

enkephalin if the stimulus was washed away in between (Fig. 7A).

In conclusion, intracellular stores of opioid peptides seem to

contain enough opioid peptides to permit tonic release after

repetitive stimulation with Mycobacterium butyricum.

In our studies fMLP- as well as Mycobacterium butyricum-induced

Met-enkephalin release could be completely blocked by Boc-

FLFLF and partially blocked by cyclosporine H in human

neutrophils (Fig. 4C, 6B and Tables 1 and 2). In rats, both Boc-

FLFLF and cyclosporine H were only partially effective and higher

doses were required (Fig. 4D, 7C and Tables 1 and 2). While

species differences cannot be fully excluded, they appear unlikely.

In contrast to mice [56], human and rat FPR show a comparable

and high affinity for fMLP [57]. The two FPR antagonists Boc-

FLFLF and cyclosporine H are functional in rodents since they

significantly reduce monocyte and neutrophil recruitment in

murine pneumococcal pneumonia [58,59] and impair the

protective effect of fMLP on infarct size in a rat model of ischemia

reperfusion injury [60]. Alternatively, differences in activation

state of neutrophils might be important. We performed our

experiments in purified human peripheral blood neutrophils from

healthy volunteers, while rat neutrophils were obtained by sterile

peritonitis, which induces significant preactivation [61]. Therefore

it is conceivable that other receptors (e.g. chemokine receptors

[62]) need to be blocked in addition to completely abolish opioid

peptide secretion. This view is supported by our previous study

[17] in which chemokine (i.e. CXCR1/2 agonist)-triggered opioid

peptide release was less effectively blocked in rat compared to

human neutrophils.

Opioid peptides can be readily detected in the inflamed synovial

tissue of patients with arthritis [63] as well as in surgical wound

[64]. Local opioid-mediated analgesia significantly reduces

postoperative pain in humans since intraarticular naloxone

administration enhances pain and consumption of pain medica-

tion, indicating a continuous release of opioid peptides [19,65]. In

the present study in rats, we delineated a molecular pathway of

tonic opioid release from neutrophils in complete Freund’s

adjuvant-induced inflammation involving mycobacterially trig-

gered FPR activation. Mycobacteria or bacterial products may

trigger opioid peptide release in arthritic joints or at the site of

surgery with accompanying infection. In addition, formyl peptides

can also be released from mitochondria of eukaryotes [66–68].

Alternatively, other releasing agents such as chemokines

(CXCR1/2 ligands) can trigger opioid peptide release from rat

and human neutrophils [17,18] and these are produced in

complete Freund’s adjuvant-induced inflammation [14] as well

as in surgical wounds [69].

Materials and Methods

Antibodies and reagents
Rabbit anti-Met-enkephalin or anti-rat-b-endorphin Abs as well

as purified Met-enkephalin and Boc-FLFLF were purchased from

Bachem, Weil am Rhein, Germany. Naloxone, D-Phe-Cys-Tyr-

D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), naltrindole hydrochlo-

ride (NTI) and fMLP were obtained from Sigma-Aldrich Chemie,

Deisenhofen, Germany, and desiccated Mycobacterium butyricum was

from BD Bioscience, Heidelberg, Germany. Complete Freund’s

adjuvant, LY294002, wortmannin and 1,2-bis(o-aminophenox-

y)ethane-N,N,N9,N9-tetraacetic acid acetoxymethyl ester

(BAPTA/AM) were purchased from Calbiochem, San Diego,

CA, USA. BAPTA/AM, LY294002, wortmannin, fMLP, and

Boc-FLFLF were dissolved in dimethyl sulfoxide (maximal final

concentration 1%). Anti-neutrophil serum was obtained from

Accurate Chemical&Scientific Corporation, Westbury, NY, USA.

Cyclosporine H was purchased from Eton Bioscience, San Diego,

CA, USA. Anti-TLR-2-phycoerythrin (PE, clone TL2.1) and anti-

TLR-4-PE (clone HTA125) as well as mouse IgG2a were obtained

from eBioscience, San Diego, CA, USA. Anti-TLR-2 (clone

TL2.1) and anti-TLR-4 (clone HTA125) were from Alexis,

antagonist Boc-FLFLF were stained with anti-Met-enkephalin Ab (red; [C] solvent control only). Original magnification 663. [F–H] Mycobacterium
butyricum-induced opioid peptide release was prevented by the intracellular Ca2+ chelator BAPTA/AM (100 mM, [F]; n = 8) but not dependent on
extracellular Ca2+ ([G], n = 7–14, no [Ca2+]e crosshatched bars). [H] Mycobacterium butyricum-induced opioid peptide release was also blocked by the
PI3K-inhibitors LY294002 (LY, 100 mM) and wortmannin (wort, 100 nM, n = 8–10). All experiments * p,0.05 one way RM ANOVA, Student-Newman-
Keuls Method. Data are means6SEM.
doi:10.1371/journal.ppat.1000362.g006

Table 2. Effect of the FPR antagonist cyclosporine H (CsH) on Mycobacterium butyricum-(Myco. but.) induced Met-enkephalin
release from human and rat neutrophils and on nociceptive thresholds in complete Freund’s adjuvans induced hindpaw
inflammation.

Opioid peptide release

Met-enkephalin [fmol/107 neutrophils] Control Myco. but. CsH 10 mM Myco. but. CsH 100 mM Myco. but.

Human neutrophils 39.364.2 143.8612.1* 66.768.3*1 n.d.

Rat neutrophils 18.562.2 239.3611.9* n.d. 148.667.3*1

Pain Behaviour

Paw withdrawal latency [s] 0 min 15 min post injection 30 min post injection 60 min post injection

Cyclosporine H (9 mg i.pl.) 7.160.3 4.660.6" 4.260.5" 4.160.6"

Solvent 6.760.6 7.260.7 6.260.5 6.260.4

*p,0.05 (one way repeated measures ANOVA, Student-Newman-Keuls method) vs. Control medium.
1p,0.05 versus Myco. but. (0.66 mg/ml) (human: n = 16–18; rat: n = 7–14; n.d. = not determined).
"p,0.05 versus 0 min (one way repeated measures ANOVA, Duncan’s method, n = 10–16).
doi:10.1371/journal.ppat.1000362.t002
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Lörrach, Germany. fMLP-fluorescein isothiocyanate (FITC) was

obtained from Invitrogen-Molecular Probes, Karlsruhe, Germany.

CD45-CyC, RP-1-PE and ED1-PE were obtained by BD

Biosciences, Heidelberg, Germany and Serotec, London, Great

Britain, respectively

Animals and complete Freund’s adjuvant-induced
inflammation

Male Wistar rats weighing 180–220 g were injected intraplan-

tarly with 150 ml complete Freund’s adjuvant in the right hind

paw as described [70]. Experiments were conducted at 2–24 h

after inoculation. All injections were performed under brief

isoflurane anesthesia. Animal protocols were approved by the

animal care committee of local authorities and were in accordance

with the guidelines of the International Association for the Study

of Pain [71].

Measurement of hyperalgesia and analgesia
Mechanical nociceptive thresholds were assessed using the paw

pressure algesiometer (modified Randall-Selitto test; Ugo Basile) as

described before [14,17]. The pressure required to elicit paw

withdrawal using a blunt piston onto the dorsal surface of the hind

paw, the paw pressure threshold, was determined. The treatments

were randomized and the experimenter was blinded to the

treatments. A decrease in the paw pressure threshold was

interpreted as hyperalgesia (pain) whereas a rise in the paw

pressure threshold was interpreted as analgesia (antinociception).

Thermal nociceptive thresholds were measured by the Har-

greaves test [42]. The latency (time; s) required to elicit paw

withdrawal was measured with an electronic timer (IITC Inc/Life

Science) after application of radiant heat to the plantar surface of a

hind paw from underneath the glass floor with a high-intensity

light bulb. The stimulus intensity was adjusted to give 20 s paw

withdrawal latency in noninflamed paws, and the cutoff was 25 s

to avoid tissue damage. The average of two measurements taken

with 20 s intervals was calculated. A decrease in paw withdrawal

latency was interpreted as pain (hyperalgesia) whereas a rise in

paw withdrawal latency was interpreted as analgesia (antinocicep-

tion).

Experimental protocols
fMLP-induced analgesia was evaluated in rats with complete

Freund’s adjuvant inflammation after intraplantar (i.pl.) injection

of 0.1–3 ng fMLP dissolved in 100 ml of NaCl 0.9% or of solvent

only. Paw pressure threshold or paw withdrawal latency were

measured 5 min after fMLP injection. In some experiments the

Figure 7. Tonic opioid peptide release through FPR stimulation reduces inflammatory pain. [A] Rat neutrophils were repeatedly
stimulated with Mycobacterium butyricum (Myco. but. 0.66 mg/ml) and Met-enkephalin (ENK) content was determined in supernatants (n = 12–16; *
p,0.05, one way RM ANOVA, Student-Newman-Keuls Method). [B, C] Mycobacterium butyricum-induced Met-enkephalin release was unaltered by
anti-TLR-2 and -TLR-4 antibodies ([B], anti-TLR-2/4 both 10 mg/ml, n = 8–19), but was significantly reduced by FPR antagonist Boc-FLFLF ([C], Boc:
100 mM, n = 7–11, both * p,0.05 one way RM ANOVA, Student-Newman-Keuls Method. [D] Rats with 2 h complete Freund’s adjuvant inflammation
were intraplantarly injected with Boc-FLFLF (Boc, 3 mg, [D], n = 5–6) and nociceptive thresholds were determined (*p,0.05 one way RM ANOVA,
Duncan Method). Data are means6SEM. [E] Rats (n = 6) with 2, 12 and 24 h complete Freund’s adjuvant inflammation were treated with 3 mg Boc
intraplantarly and paw withdrawal latency was measured afterwards (* p,0.05, Wilcoxon Signed Rank test compared to baseline (BL)).
doi:10.1371/journal.ppat.1000362.g007
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opioid receptor antagonist naloxone (0.56 ng i.pl.), CTOP (2 mg

i.pl.), NTI (50 mg i.pl.), or an antibody against Met-enkephalin

(1.25 mg i.pl.) were injected concomitantly. Optimal doses were

determined in pilot experiments and in previous studies [17,18].

To deplete rats of neutrophils, animals were injected with 80 ml

anti-neutrophil serum intravenously 18 h before complete

Freund’s adjuvant injection as described previously [14,17].

Modulation of baseline inflammatory thermal hyperalgesia was

analyzed in rats with complete Freund’s adjuvant (2–24 h)

inflammation after i.pl. treatment with naloxone (0.56 ng), anti-

Met-enkephalin (1.25 mg), anti-b-endorphin (2 mg), FPR antago-

nists (Boc-FLFLF: 0.3 and 3 mg or cyclosporine H: 0.9 and 9 mg)

or after systemic neutrophil depletion.

Monocyte isolation by MACS separation
To obtain human monocytes from healthy blood donors, red

blood cells were lyzed using buffer EL (Qiagen, Hilden, Germany).

The remaining white blood cells were incubated with anti-CD14-

coupled magnetic beads (Miltenyi Biotec, Bergisch-Gladbach,

Germany) in phosphate-buffered saline (PBS) containing 0.5%

bovine serum albumin and 2 mM ethylene diamine tetraacetic

acid. CD14+ monocytes were isolated using a LS column (Miltenyi

Biotec). Purity was confirmed by staining with anti-CD14 FITC

antibody (BD Biosciences) and FACS analysis (see below).

Opioid peptide release
Human neutrophils from healthy blood donors were purified

using dextran sedimentation, Ficoll separation and hypotonic lysis

(all Amersham Biosciences). Rat peritoneal neutrophils were

obtained 4 h after intraperitoneal injection of 1% oyster glycogen

(Sigma-Aldrich Chemie) [17,72].

For determination of opioid peptide release, 56107 neutrophils

or 16107 CD14+ monocytes were stimulated with fMLP (1–

1000 nM) or Mycobacterium butyricum (0.06–0.66 mg/ml) after

preincubation with cytochalasin B (5 mg/ml) for 5 min in Hank’s

balanced salt solution containing the proteinase inhibitors bestatin

(5 mg/ml), aprotinin (40 mg/ml) and thiorphan (100 mM, all

Sigma-Aldrich Chemie) [17,73,74]. Doses of fMLP and Mycobac-

terium butyricum were based on pilot experiments and the literature

[74,75]. In some experiments, cells were concomitantly incubated

with inhibitors as described in the results section. Doses were

established in pilot experiments and according to the literature

[17,31,35]. Control samples with the solvent dimethyl sulfoxide

did not induce significant release. Doses for anti-TLR-2 (clone

TL2.1) and anti-TLR-4 (clone HTA125) antibodies were chosen

based on their blocking effects according to the literature [46,49–

52]. Supernatants were obtained after 7 min stimulation and

stored at 220uC until further analysis by radioimmunoassay using

commercially available kits for rat or human Met-enkephalin and

b-endorphin (Bachem) [17,76,77].

Cell culture and transfection
Construction of plasmids coding for the human fMLP receptor

has been described elsewhere [78]. HEK293 cells were grown at

37uC and 5% CO2 in Dulbecco’s modified Eagle’s medium or

minimal essential medium with Earle’s salts, supplemented with

10% fetal calf serum, 2 mM glutamine, 100 mg/ml streptomycin,

and 100 units/ml penicillin. HEK293 cells were transfected using

Fugene 6 transfection reagent (Roche Applied Science, Man-

nheim, Germany) according to the manufacturer’s recommenda-

tions. The amount of transfected human FPR plasmid cDNA was

250 ng per 35 mm dish and was kept constant by addition of

empty expression vector (pcDNA3 up to 2 mg) where necessary.

Ca2+ imaging
Fluorescence imaging was performed with a monochromator-

equipped xenon lamp and a cooled CCD camera (TILL-

Photonics) connected to an inverted epifluorescence microscope

(Axiovert 100; Carl Zeiss). All imaging experiments were

performed in a Hepes-buffered solution containing 128 mM

NaCl, 6 mM KCl, 1 mM MgCl2, 1 mM CaCl2, 5.5 mM glucose,

10 mM Hepes (pH 7.4), and 0.2% (wt/vol) bovine serum albumin.

For determination of [Ca2+]i, neutrophils or FPR transfected

HEK293 cells were placed on dishes coated with poly-L-lysine and

then loaded with 1 or 2 mM Fura 2/AM (Molecular Probes-

Invitrogen) for 30 min at 37uC as previously described [79]. After

basal recordings, cells were stimulated by subsequent addition of

1 mM fMLP or dimethyl sulfoxide extracted Mycobacterium

butyricum. Fura-2 loaded cells were alternately excited at 340 and

380 nm, and fluorescence was detected through a 505 nm filter.

Calibration of [Ca2+]i was performed as described [17,79].

Flow cytometry
TLRs were labeled in human neutrophils after preincubation

with 10% mouse serum for 10 min using PE conjugated anti-

human-TLR-2, anti-human-TLR-4 or isotype control antibodies

according to manufacturer’s instructions. The FPR was stained

using FITC-conjugated fMLP (1 mM). In selected experiments

samples were pretreated for 10 min with different concentrations

of Boc-FLFLF before addition of FITC-fMLP [13,14,17,76].

FPR staining in subcutaneous paw tissue was performed as

described before [17]. Neutrophils were identified by CD45+ and

RP1+ staining while macrophages were CD45+ ED1+.

Immunofluorescence
Immunofluorescence staining was performed using human

neutrophils (5 min preincubation with cytochalasin B, then

addition of 0.66 mg/ml Mycobacterium butyricum for 15 min) [41]

as well as neutrophils preincubated with Boc-FLFLF. After

centrifugation for 10 min at 300 g, cell pellets of neutrophils were

reconstituted in 5 ml PBS, and 50,000 neutrophils in suspension

were then centrifuged by a Shandon Cytospin 3 (Thermo

Shandon, Pittsburgh, PA) at 20 g for 3 min on glass slides.

Neutrophils were fixed for 30 min and confocal analysis was

carried out as previously described [80]. Briefly, neutrophil

cytospins were incubated with rabbit polyclonal antibodies against

Met-enkephalin (1:1000, Peninsula Laboratories, Belmont, CA,

USA) and subsequently with a Texas red-conjugated goat anti-

rabbit antibody. Thereafter, cytospins were washed with PBS and

mounted in vectashield. Images were acquired on a Zeiss

LSM510META confocal laser scanning system (Zeiss AIM; Jena)

using a 636/1.4 Plan-Apochromat or 406/1.3Plan-Neofluar oil

immersion objective in a series of optical sections of about 1 mm

thickness. Each experiment was repeated three times. To

demonstrate specificity of staining, the following controls were

included as mentioned in detail elsewhere [14,81]: (1) preabsorp-

tion of diluted antibody against Met-enkephalin with purified Met-

enkephalin (Peninsula laboratories-Bachem) and (2) omission of

either the primary or the secondary antibodies.

Statistical analysis
Data are presented as raw values (mean6SEM). Normally

distributed data were analyzed by student’s t-test or Mann-

Whitney test. Not normally distributed data were analyzed by

Wilcoxon Signed Rank Test. Multiple comparisons were analyzed

by one-way ANOVA or by one-way ANOVA on ranks in case of

not normally distributed data. If necessary repeated measures
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(RM) one way ANOVA was used. Posthoc comparisons were

performed by Student-Newman-Keuls’, Dunnett’s or Duncan’s

method, respectively. Differences were considered significant if

p,0.05. Dose dependency was evaluated by linear regression

analysis. Sigma Stat was used to analyze the data.

Supporting Information

Figure S1 b-Endorphin release from neutrophils is triggered by

mycobacteria and FPR agonists but not by toll like receptor-2 or

toll like receptor-4 agonists. [A–C] Rat and human neutrophils as

well as CD14+ human monocytes were incubated with heat-

inactivated Mycobacterium butyricum (Myco. but.), and b-endorphin

(END) release was quantified by radioimmunoassay (n = 5–12 *

p,0.05, one way RM ANOVA, Student-Newman-Keuls Meth-

od). [D–F] Human (n = 8–14) and [G–I] rat neutrophils (n = 5–10)

were stimulated with the TLR-2 agonist peptidoglycan, the TLR-4

agonist lipopolysaccharide or the FPR agonist fMLP, and Met b-

endorphin (END) release was measured in the supernatant (*

p,0.05; one way RM ANOVA, Student-Newman-Keuls Meth-

od). Data are presented as means+/2SEM.

Found at: doi:10.1371/journal.ppat.1000362.s001 (0.26 MB TIF)
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