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Abstract

Chronic inflammation in inflammatory bowel disease (IBD) results from a breakdown of

intestinal immune homeostasis and compromise of the intestinal barrier. Genome-wide

association studies have identified over 200 genetic loci associated with risk for IBD, but the

functional mechanisms of most of these genetic variants remain unknown. Polymorphisms

at the TNFSF15 locus, which encodes the TNF superfamily cytokine commonly known as

TL1A, are associated with susceptibility to IBD in multiple ethnic groups. In a wide variety of

murine models of inflammation including models of IBD, TNFSF15 promotes immunopathol-

ogy by signaling through its receptor DR3. Such evidence has led to the hypothesis that

expression of this lymphocyte costimulatory cytokine increases risk for IBD. In contrast,

here we show that the IBD-risk haplotype at TNFSF15 is associated with decreased expres-

sion of the gene by peripheral blood monocytes in both healthy volunteers and IBD patients.

This association persists under various stimulation conditions at both the RNA and protein

levels and is maintained after macrophage differentiation. Utilizing a “recall-by-genotype”

bioresource for allele-specific expression measurements in a functional fine-mapping

assay, we localize the polymorphism controlling TNFSF15 expression to the regulatory

region upstream of the gene. Through a T cell costimulation assay, we demonstrate that

genetically regulated TNFSF15 has functional relevance. These findings indicate that genet-

ically enhanced expression of TNFSF15 in specific cell types may confer protection against

the development of IBD.
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Author summary

Crohn’s disease and ulcerative colitis, characterized by gut inflammation, are the two

main subtypes of Inflammatory bowel disease (IBD). Over two hundred genetic loci have

been identified that contribute to risk for IBD. However, functional studies are required

to determine the mechanisms by which these genetic changes might affect disease risk. To

date, only a few IBD loci have been functionally characterized. We focused on the IBD

risk locus at TNFSF15, encoding the cytokine also known as TL1A. Previous work has

shown that TNFSF15 enhances lymphocyte activation and promotes inflammation in ani-

mal models of disease. However, we here call into question the assumption that TNFSF15

is always a pro-inflammatory molecule by demonstrating that the IBD risk allele at

TNFSF15 is associated with decreased production of TNFSF15 by monocytes and macro-

phages at rest and after stimulation. In addition, we narrow the list of potential variants at

TNFSF15 responsible for controlling its expression, and we demonstrate that genetically

controlled TNFSF15 can have functional impact on responding T cells. These findings

both demonstrate a mechanism by which this IBD risk locus might drive disease predispo-

sition and suggest a new protective role for TNFSF15 in maintaining the intestinal barrier.

Introduction

Maintaining immune homeostasis in the microbiome-rich environment of the intestine is a

complex process, mediated by numerous mechanisms including the physical epithelial barrier,

mucin secretion, antimicrobial peptides, anti-inflammatory cytokines, regulatory cells, and

IgA responses [1, 2]. Inflammatory bowel disease (IBD, including Crohn’s disease, CD, and

ulcerative colitis, UC) results from a breakdown in mucosal immune homeostasis [3], but the

precise mechanisms by which barrier dysfunction begins remain largely unknown. To date,

genome-wide association studies (GWASs) have identified approximately 200 distinct suscep-

tibility loci for IBD, the majority of which are associated with both CD and UC [4, 5]. A fine-

mapping study used Bayesian statistical methodology to find the most probable causal variants

underlying the association signal at each locus [6]. However, to fully realize the benefit of

GWAS discoveries, functional studies are required to move beyond statistical associations with

genetic loci and uncover the biological mechanisms behind genetic predisposition to disease.

Functional studies of IBD-associated genetic variants have been performed for several loci,

demonstrating that risk variants can lead to a breakdown in the intestinal barrier through both

reducing (e.g NOD2 [7–10] and ATG16L1 [11–13]) and enhancing (e.g. IL23R [14–17]) gene

function. Expression quantitative trait locus (eQTL) studies have found genes whose expres-

sion may be increased or decreased by IBD risk-associated variants and have highlighted the

impact of cell type on the effects of a genetic variant [18–20]. In a complementary approach,

investigation of gene expression patterns in monocytes and monocyte-derived macrophages

revealed enrichment for genes near IBD loci among those upregulated during macrophage dif-

ferentiation or stimulation [21], suggesting the importance of this cellular lineage in IBD.

Investigating how IBD-associated variants influence disease susceptibility should provide

insight into disease etiology and enable design of improved therapeutic or preventive

strategies.

The genomic locus encoding the tumor necrosis factor superfamily member TNFSF15 (also

known as TL1A) is associated with both CD and UC in populations of multiple ethnic back-

grounds [4, 5, 22, 23]. TNFSF15 is produced by a variety of tissues, the most studied of which

include myeloid lineage cells, activated T cells, and endothelial cells [24]. At the cellular level,
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were obtained as follows: summary statistics for

the European cohort from the GWAS plus

Immunochip trans-ancestry MANTRA meta-

analyses by Liu et al (URL ftp://ftp.sanger.ac.uk/

pub/consortia/ibdgenetics/iibdgc-trans-ancestry-

filtered-summary-stats.tgz, file IBD_trans_ethnic_

association_summ_stats_b37.txt.gz);

corroborating data for a monocyte-derived

macrophage TNFSF15 eQTL at rs6478109 by

Nédélec et al in the IMMUNPOP browser (URL

http://132.219.138.157/nedelec/eQTL/, search term

rs6478109); regulatory information about the

TNFSF15 promoter from ENCODE in the UCSC

genome browser (URL http://genome-euro.ucsc.

edu/cgi-bin/hgTracks?db=hg19&lastVirtMode

Type=default&lastVirtModeExtraState=&virtMode

Type=default&virtMode=0&nonVirtPosition=

&position=chr9%3A117566800-117570000&

hgsid=228207134_vgkDNh2jKZKgDRQr38T

Dxd4l3YSF); CAGE data for enhancer identification

associated with Baillie et al in the ZENBU browser

(URL http://fantom.gsc.riken.jp/zenbu/gLyphs/

#config=dXO5cTaJBZiiw73fJq2oGD;loc=hg19::

chr9:117566249..117571251+). All other relevant

data are within the paper and its Supporting

Information files.
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TNFSF15 costimulates both T cells and innate lymphoid cells (ILC) and promotes differentia-

tion of IL-9-producing T cells [25–31]. Increased TNFSF15 expression has been observed sys-

temically and at the site of inflammation in IBD and is particularly associated with active

disease [32–37]. Such observations have led to the hypothesis that the allele associated with

risk for IBD at TNFSF15might increase its expression and thereby promote inflammation.

Several studies have found associations between genetic variants tagging the IBD-associated

locus at TNFSF15 and TNFSF15mRNA and protein expression [18, 19, 38–47]. However, the

population studied, the disease status of the subjects, the cell type considered and the observed

direction of effect differ between studies, leaving the mechanism by which this genetic locus

confers susceptibility to IBD unclear.

To shed light on the functional consequences of the IBD susceptibility locus at TNFSF15we

examined the association of single nucleotide polymorphism (SNP) genotype with mRNA

expression in specific immune cell types in multiple cohorts of healthy individuals and patients

with inflammatory diseases. We found that the IBD-associated locus is an eQTL for monocyte

TNFSF15. The genetic signals underlying the associations with TNFSF15 expression and IBD

colocalize, suggesting that disease risk is mediated though regulation of gene expression.

Importantly, we show that the IBD-protective allele at TNFSF15 is strongly associated with

increased monocyte TNFSF15mRNA in both healthy individuals and patients with inflamma-

tory diseases. To further investigate the mechanism of this protective haplotype, we used a

“recall-by-genotype” bioresource of healthy individuals from the United Kingdom. This analy-

sis demonstrated that the IBD-protective allele is associated with increased TNFSF15mRNA

and protein expression under a variety of stimulation contexts, as well as monocyte costimula-

tory capacity in acute lymphocyte activation. Through allele-specific expression measurements

in individuals with breaks in the associated haplotype block, we functionally fine-mapped the

expression-associated locus to upstream of the gene. Importantly, we found that association of

the protective allele with increased TNFSF15 expression was maintained in monocyte-derived

macrophages, which play an important role in mucosal immunology. Thus, our findings sug-

gest that genetically elevated TNFSF15 from monocytes or monocyte-derived cells may protect

healthy individuals from the development of IBD.

Results

The IBD protective genotype at TNFSF15 is associated with increased

TNFSF15 expression in circulating monocytes

We previously identified an association between genotype at the TNFSF15 IBD susceptibility

locus and TNFSF15mRNA expression in peripheral blood monocytes in both healthy individ-

uals and newly diagnosed IBD patients from the UK [18, 19] (Fig 1A, S1 Fig). We also con-

firmed this association in a cohort of British patients with another immune-mediated disease,

anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis [18] (S1 Fig). The SNP

most associated with TNFSF15 expression was rs6478109 [19], which is located 358 base pairs

upstream of TNFSF15 and has a minor allele frequency (MAF) of 32.5% in individuals of Euro-

pean descent. An IBD GWAS trans-ancestry analysis by Liu et al indicated that the SNP most

strongly associated with IBD in individuals of European descent at this locus is rs7848647 [4],

which is 280 base pairs upstream of rs6478109 and in near complete linkage disequilibrium

(LD) with it (r2 = 0.995 in 1000 Genomes Phase 3 European cohort). Comparison of the

regional association plots for the TNFSF15 eQTL and IBD susceptibility revealed similar pat-

terns of association (Fig 1A). In order to formally evaluate whether the eQTL and the disease

association signal are driven by the same causal variant or two distinct variants in LD, we
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performed colocalization testing [48]. Our results indicated that the colocalization was highly

likely (posterior probability of a shared underlying causal variant was 0.998).

rs6478109 genotype is also associated with TNFSF8 expression in whole blood [49] and

monocytes [50], and additional monocyte TNFSF8 eQTLs have been found in this genomic

region [18–20, 51]. However, rs6478109 is not the SNP most associated with TNFSF8 expres-

sion in any of these studies. Comparison of the patterns of genetic association across this locus

with IBD and TNFSF8 expression in our previous monocyte eQTL data [19] demonstrated

stark differences (S2 Fig), suggesting that TNFSF8 is unlikely to be the causal gene at this locus.

Colocalization testing confirmed that the IBD association and TNFSF8 eQTL signals were very

unlikely to be driven by a shared causal variant (posterior probability 0.092).

These analyses indicate that IBD susceptibility may be mediated by changes in TNFSF15
expression. We therefore performed further functional examination of the locus using a recall-

by-genotype study design in an independent bioresource of healthy individuals recruited from

the region around Cambridge, UK. We confirmed the association of rs6478109 with TNFSF15
mRNA in peripheral blood monocytes (p 5.63 x 10−6, Fig 1B, S1 Table). Importantly, in both

cohorts of healthy volunteers and the cohorts of IBD and ANCA-associated vasculitis patients,

the IBD protective allele (A, the minor allele in the European population) was consistently

associated with increased expression of TNFSF15 (Fig 1, S1 Fig). In contrast to previous specu-

lation that TNFSF15 predisposes to inflammatory disease, this suggests a novel protective role

for this cytokine in preventing the development of human IBD.
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cohort from Liu et al [4]) and TNFSF15 expression (n = 39 healthy individuals and 80 IBD patients). (B) TNFSF15mRNA expression was measured in ex vivo
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TNFSF15 expression is rapidly upregulated in myeloid cells by stimulation via pattern rec-

ognition receptors, such as toll-like receptor ligands, and Fc receptors (FcRs) [29, 52, 53].

Although resting T cells minimally express TNFSF15, T cell receptor (TCR) stimulation results

in robust expression [29, 54]. To examine the effect of cellular stimulation on the association

of genotype with TNFSF15 expression, we stimulated monocytes and T cells for 4 and 24

hours, respectively (time courses depicted in S3 Fig). In monocytes stimulated with immune

complex and intracellular poly(I:C), the protective allele was associated with higher levels of

TNFSF15mRNA (p 1.33 x 10−3 and p 0.0155, respectively), similar to results in unstimulated

cells, while LPS-stimulated monocytes showed a comparable trend but with more variability (p
0.273, Fig 2A). A formal comparison of the eQTL in unstimulated versus stimulated mono-

cytes revealed no significant change in the magnitude of the effect of genotype on gene expres-

sion following stimulation (Methods, S4 Fig, S1 Table). In T cells stimulated via the TCR with

anti-CD3 and anti-CD28, there was no association between rs6478109 genotype and TNFSF15
expression (CD4+ T cells p 0.861, CD8+ T cells p 0.627, Fig 2B). Thus rs6478109 is a monocyte

eQTL in which the IBD risk allele is associated with reduced TNFSF15 expression both at base-

line and after stimulation.

Inter-individual differences apart from SNP genotype at the TNFSF15 locus might influence

gene expression and thereby obscure genotype-dependent differences. Heterozygotes present

a unique opportunity to control for this variability as the ratio of allelic expression can be mea-

sured within each individual using allele-specific expression (ASE) assays. rs6478109 is in LD

with several intronic SNPs measurable in amplified pre-mRNA, two of which we used to

examine ASE (S5 Fig). Due to low TNFSF15 pre-mRNA expression in unstimulated cells, alle-

lic ratio measurements were only feasible in stimulated cells. In accordance with the allelic dos-

age effect observed in Fig 2A, such that TNFSF15 expression increased with more copies of the

IBD-protective rs6478109:A allele, heterozygous monocytes stimulated with immune complex

or intracellular poly(I:C) showed significant allelic imbalance favoring the protective allele (p
1.09 x 10−6, p 0.0215, respectively, Fig 2C left and middle panels). Although TNFSF15 expres-

sion in LPS-stimulated monocytes was not associated with allelic dosage by standard eQTL

analysis (Fig 2A), in the internally controlled environment of heterozygous individuals, we did

find significant ASE (p 1.46 x 10−5, Fig 2C right panel). In contrast, once again, stimulated T

cells showed no allelic imbalance (CD4+ T cells p 0.175, CD8+ T cells p 0.424, Fig 2D and S2

Table), confirming the monocyte-specific nature of the TNFSF15 eQTL.

The most direct mechanism by which TNFSF15mRNA expression could influence IBD sus-

ceptibility would be through controlling TNFSF15 protein levels. Stimulated monocytes

express transmembrane TNFSF15 protein, but it is rapidly cleaved from their surfaces.

TNFSF15 expression is thus measurable both on the cell surface and in the supernatant. To

determine if the TNFSF15 eQTL extended to the protein level, we first measured surface

TNFSF15 expression in immune-complex stimulated monocytes from homozygous individu-

als. Individuals homozygous for the IBD protective allele exhibited increased cell surface

TNFSF15 (p 0.0145, Fig 3A). We next looked at soluble TNFSF15 in the supernatants of mono-

cytes stimulated with immune complex, intracellular poly(I:C), or LPS. In the absence of stim-

ulation, soluble TNFSF15 levels in monocyte supernatants were low (around the limit of

detection) regardless of genotype. In contrast, under all stimulation conditions, soluble

TNFSF15 was significantly increased in supernatants of cells from IBD protective allele homo-

zygotes (immune complex p 6.56 x 10−4, intracellular poly(I:C) p 4.16 x 10−3, LPS p 3.42 x 10−3,

Fig 3B). Thus, the levels of TNFSF15 both on the cell surface and in solution were associated

with genotype. Of note, total serum TNFSF15 protein levels were not associated with genotype

(p 0.962, S6A Fig), suggesting that the effect of genotype on monocyte TNFSF15 levels is rele-

vant primarily in local cellular contexts. Secretion of other inflammatory cytokines from these
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monocytes was not associated with rs6478109 genotype at the same time-point, demonstrating

the cis-specificity of the TNFSF15 eQTL (S6B-S6C Fig). To confirm that secreted TNFSF15

originated from newly synthesized protein, we stimulated monocytes with immune complex

in the presence of either actinomycin D to block transcription (Fig 3C) or cycloheximide to

block translation (Fig 3D). Both treatments resulted in loss of detectable protein, indicating

that the effects of genotype on TNFSF15 protein expression were due to differences in de novo
transcription and translation of TNFSF15.

Fine-mapping narrows the functional variant in the TNFSF15 locus to

upstream of the gene

Fine-mapping of genotype-phenotype associations generally requires a large number of sam-

ples to achieve the power necessary to statistically infer probable causality for one SNP over

another in high LD. In order to solve this problem with a limited number of samples, we again

leveraged the power of the controlled environment within heterozygous individuals. We exam-

ined ASE in immune complex-stimulated monocytes from healthy volunteers recruited specif-

ically for having genetic cross-over events in the TNFSF15 haplotype block, such that they

were heterozygous for certain SNPs but homozygous for others (Fig 4A). An earlier IBD meta-

analysis by Jostins et al identified rs4246905 in the third intron of TNFSF15 as the tag SNP for

disease association at this locus in European individuals [5], whereas the more recent trans-

ancestry analysis described above by Liu et al [4] identified the upstream SNP rs7848647 as the

most associated in the same population. To narrow the location of the eQTL causal variant to

either the upstream or downstream portion of the gene, we first examined ASE in individuals

heterozygous at rs6478109 in the promoter and rs4263839 in the first intron but homozygous

at rs4246905 in the third intron. These individuals maintained ASE of TNFSF15 (p 1.67 x 10−4,

Fig 4B), indicating that rs4246905 is not causal and suggesting that the SNP influencing

TNFSF15 expression is in greater LD with the upstream SNPs than with rs4246905. Confirm-

ing this finding, individuals heterozygous at rs4246905 but homozygous at the two upstream

loci showed no ASE (p 0.752, Fig 4C).

Examining the LD structure of variants in the TNFSF15 locus, we found 17 variants that are

in greater LD with the upstream SNPs rs6478109 and rs4263839 than with the downstream

SNP rs4246905, and that are in higher LD with these upstream SNPs than is rs4246905 (S3

Table). To further distinguish between these potential causal variants, we identified individuals

homozygous at the rs6478109 promoter SNP but heterozygous at rs4263839 in the first intron

and measured TNFSF15ASE in immune-complex-stimulated monocytes. These samples

lacked ASE (p 0.512, Fig 4D), indicating that rs4263839 is not the causal variant. Only three

variants identified in the 1000 Genomes Phase 3 European cohort in high LD with rs6478109

(r2 > 0.8) are in higher LD with rs6478109 than with the eliminated SNP rs4263839. These are

rs6478109 itself, rs7848647 (the most significant IBD-associated variant in Europeans in Liu

et al [4]) and rs10817678, all of which are located upstream of TNFSF15. Two of these,

rs6478109 and rs7848647, are located close to the promoter of TNFSF15, in a region containing

a cluster of transcription factor binding sites, active chromatin marks and enhancers, making

them the leading candidates for the causal variant (S7 Fig). These two SNPs were completely

linked in all individuals recruited for ASE measurement in Figs 2 and 4.

rs4246905 (ratio of T/C reported), while ratios for poly(I:C)-stimulated monocytes and stimulated CD8+ T cells were measured using tag SNP rs4263839 (ratio of A/G

reported). All individuals were heterozygous at both rs6478109 and the tag SNP. rs4263839:A and rs4246905:T are in phase with the IBD-protective allele rs6478109:A in

1000 Genomes EUR subjects. Lines represent mean values and p values are from Welch’s t-test.

https://doi.org/10.1371/journal.pgen.1007458.g002
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Fig 3. Genotype is associated with de novo TNFSF15 protein production in stimulated monocytes. (A) An example of gating for TNFSF15+ monocytes after 4

hours immune complex stimulation is depicted (left). Black line = monoclonal anti-TNFSF15; grey shading = isotype control. Percentages of TNFSF15+ monocytes

after immune complex stimulation are quantified for GG (n = 12) and AA (n = 12) homozygous individuals (right). (B) Soluble TNFSF15 was measured in

supernatants of monocytes from GG (n = 12) and AA (n = 12) homozygous individuals after the indicated 4-hour stimulations by custom anti-TNFSF15 Bio-Plex

assay. p values are from Mann-Whitney test. (C) Monocytes were stimulated with immune complex for four hours in the presence of actinomycin D (ActD) or

dimethyl sulfoxide (DMSO) control. ND indicates none detected. (D) As (C) in the presence or absence of cycloheximide (CHX). (C) and (D) are representative of

two independent experiments each.

https://doi.org/10.1371/journal.pgen.1007458.g003
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Genetically modulated TNFSF15 expression affects strength of

costimulation

To examine the phenotypic consequences of variation in TNFSF15 expression, we performed

comprehensive immunophenotyping of T cells, B cells, monocytes, dendritic cells, and NK
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Fig 4. The eQTL causal SNP resides upstream of TNFSF15. (A) The TNFSF15 locus on chromosome 9 is depicted, marking SNPs used for functional

fine-mapping. (B) Immune complex-stimulated monocytes from individuals heterozygous at rs6478109 and rs4263839 but homozygous at rs4246905

(n = 4) were examined for allele-specific expression. The box on the transcription arrow indicates the SNP used for measuring allelic imbalance. (C) As

(B) with individuals homozygous at rs6478109 and rs4263839 but heterozygous at rs4246905 (n = 4). (D) As (B) with individuals homozygous at

rs6478109 but heterozygous at rs4263839 and rs4246905 (n = 3). Lines represent mean values and p values are from Welch’s t-test.

https://doi.org/10.1371/journal.pgen.1007458.g004
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cells from peripheral blood of individuals homozygous for the rs6478109 polymorphism. We

found no association between genotype and cell population frequencies (S8 and S9 Figs).

To test whether genetically driven variation in TNFSF15 expression under acute stimulation

would result in differences in responding cell populations, we measured the effects of endoge-

nous TNFSF15 on T cell activation. TNFSF15 costimulation promotes T cell proliferation and

upregulation of the IL-2 receptor alpha chain (CD25), particularly under low levels of TCR

stimulation [26, 29, 30]. We therefore examined CD4+ T cell proliferation in stimulated

peripheral blood mononuclear cells from individuals homozygous for the TNFSF15 expres-

sion-associated variant rs6478109. CD8+ T cells make up a highly variable proportion of

peripheral blood cells across individuals and these cells respond to TCR stimulation by making

and consuming IL-2, which can affect CD4+ T cell proliferation. To avoid this confounding

factor, we depleted peripheral blood mononuclear cells of CD8+ T cells before culturing the

remaining cells (including CD4+ T cells and monocytes) with low level TCR stimulation for

two days. Blocking TNFSF15 signaling with an antagonistic antibody resulted in decreased

CD25 expression and proliferation of CD4+ T cells (Fig 5A), demonstrating the impact of

endogenous TNFSF15 in this setting. Samples from individuals homozygous for the IBD pro-

tective allele that is associated with increased monocyte TNFSF15 exhibited significantly

increased CD25 expression and proliferation of CD4+ T cells compared to individuals homo-

zygous for the IBD risk allele (p 9.32 x 10−3, p 0.0289, respectively, Fig 5B and 5C). The differ-

ences in CD25 expression and proliferation were reduced with addition of anti-TNFSF15 such

that these activation markers were no longer statistically significantly elevated in protective

allele homozygotes (CD25 expression p 0.0939, proliferation p 0.0541, Fig 5B and 5C). While

this system does not recapitulate the complex intestinal environment of the pre-morbid at-risk

individual, it demonstrates that genetically regulated TNFSF15 expression can influence the

ability of monocytes to costimulate responding lymphocytes, confirming the functional rele-

vance of this TNFSF15 eQTL.

Monocyte-derived macrophages also exhibit allelic imbalance favoring the

IBD protective allele

Intestinal CX3CR1+ mononuclear phagocytes derived from circulating monocytes [55–57] are

likely to be the most relevant producers of TNFSF15 in the context of gut immune homeostasis

[31]. To test whether phagocytic cells derived from peripheral blood monocytes maintain

genotype-dependent TNFSF15 expression, we differentiated monocyte-derived macrophages

(MDMs) from heterozygous individuals and measured ASE. MDM differentiated in the pres-

ence of M-CSF and GM-CSF both exhibited significant allelic imbalance favoring the minor,

IBD-protective allele (p 0.0178 and p 1.39 x 10−3, respectively, Fig 6A and 6B). ASE was also

maintained after stimulation of M-CSF-derived MDM with LPS for 4 hours (p 0.0251, Fig 6C).

To confirm these findings in a second cohort, we mined publicly available data from an MDM

eQTL study by Nedelec et al [46]. These data demonstrated a significant TNFSF15 eQTL at

rs6478109 in resting MDM and after Salmonella infection (S10 Fig). The direction of effect

was concordant with our monocyte and MDM data, such that expression of TNFSF15
increased with more copies of the IBD-protective allele rs6478109:A. These results demon-

strate that the IBD-protective allele increases TNFSF15 expression in macrophages as well as

monocytes, and is therefore likely to be relevant to the gut environment.

Discussion

Understanding the mechanisms by which disease susceptibility variants influence disease risk

is a key challenge of the post-GWAS era. Exploring the consequences of disease risk variants

Inflammatory bowel disease TNFSF15 risk locus and monocytes/macrophages
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in healthy individuals allows examination of their effects in the pre-disease state and avoids the

potential confounding effects of treatment and disease itself. Use of a “recall-by-genotype”

bioresource enables investigation of specific polymorphisms with balanced experimental

designs and facilitates in-depth investigation of causal quantitative trait loci by specific recruit-

ment of individuals with breaks in common LD blocks. Here we used such a bioresource to

investigate the functional consequences of an IBD-associated genetic variant and perform

functional fine-mapping. We have demonstrated that the IBD-associated locus at TNFSF15
harbors an expression-associated polymorphism in which the rs6478109:A IBD protective

allele is associated with increased monocyte TNFSF15 expression and lymphocyte costimula-

tory activity. Interestingly, TNFSF15 expression in stimulated T cells was not significantly asso-

ciated with SNP genotype at this locus (discussed further in S1 Text), suggesting the

importance of cellular context in utilization of the particular cis regulatory element that this

polymorphism affects. Through ASE assays in cells from individuals specifically recruited for

haplotype cross-over events, we refined the location of the causal variant for gene expression

to the upstream region of the gene. Colocalization testing indicated that the eQTL and IBD

Fig 5. Genetically regulated TNFSF15 controls costimulatory capacity. (A) CD8-depleted PBMC were stained with proliferation dye eFluor670 and

stimulated with 1 μg/mL anti-CD3 with and without 10 μg/mL anti-TNFSF15 for 48 hours. Flow cytometry plots depict cells gated on live, CD4+ cells. (B)

CD25+ cells were measured as in (A) in samples from rs6478109 genotyped individuals (GG, n = 8; AA, n = 7). (C) CD25+ divided cells were measured in

the same samples as in (B). p values from Mann-Whitney test.

https://doi.org/10.1371/journal.pgen.1007458.g005
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association are very likely to be due to the same causal variant. This suggests that the mecha-

nism by which SNP genotype at TNFSF15 influences IBD susceptibility is through altering

TNFSF15 expression. Our work provides an example of how functional studies not only

uncover the phenotypic effects of genetic variation but can also complement statistical meth-

ods for mapping disease association.

The IBD fine-mapping study by Huang et al examined the TNFSF15 locus, detailing techni-

cal difficulties with their genotyping of an indel in the region [6]. The three typed variants that

interrogated the indel (chr9:117571294, chr9:117571293, and rs59418409) were assigned pos-

terior probabilities of being causal 0.40, 0.40, and 0.11, respectively. On the basis that these

three variants in fact represent a single indel (now annotated as rs35396782), the authors then

summed the probabilities and concluded that this indel is the likely causal variant for IBD risk.

The rs35396782 indel is 2885 base pairs upstream of TNFSF15 and in LD (r2 = 0.817) with

rs6478109 (S3 Table and S11 Fig). Our analysis cannot exclude the possibility that this indel is

causal for the eQTL, but the LD patterns in our functional fine-mapping and the presence of

active chromatin marks in the region of the promoter SNPs rs6478109 and rs7848647 favor

these candidates. Robust genotyping of the indel will be necessary to draw conclusions about

its association with both IBD and TNFSF15 expression.

Previous studies describing gene expression association with genotype at TNFSF15 have

yielded conflicting results [38–45] (discussed further in S1 Text). Our data unequivocally show

that the IBD risk allele is associated with decreased monocyte TNFSF15 expression. Use of

three genotyping platforms, two mRNA measurement technologies, and two protein measure-

ment methods ensures the robustness of our results. In support of our findings, mining of the

GTEx project database [45, 47] reveals a significant TNFSF15 eQTL at rs6478109 in whole

blood with the same direction of effect that we observed. Of relevance to IBD, the GTEx data-

base also includes a nominally significant eQTL (p<10−3) with the same direction of effect in

sigmoid colon.
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Fig 6. Monocyte-derived macrophages also favor expression of the IBD-protective allele. (A) Peripheral blood monocytes from rs6478109

heterozygotes were differentiated into macrophages in the presence of M-CSF (n = 10) or (B) GM-CSF (n = 7) before examining allele-specific

expression. (C) Macrophages derived in (A) were stimulated with LPS for 4 hours before examining allele-specific expression (n = 10, genomic DNA

as for panel (A)). ASE was measured at rs4263839 (ratio of A/G reported) in the first intron of TNFSF15. All individuals were heterozygous at both

rs4263839 and rs6478109. rs4263839:A is in phase with the IBD-protective allele rs6478109:A in 1000 Genomes EUR subjects.

https://doi.org/10.1371/journal.pgen.1007458.g006
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In the gut, peripheral blood monocytes differentiate into macrophages, which are critical

for maintaining mucosal immune homeostasis [58]. A recent study by Baillie et al posited that

monocyte maladaptation to macrophage differentiation and activation in the gut environment

is an important driver of IBD [21]. Examination of the supporting information for their study

reveals that TNFSF15 is strongly upregulated during this process. A key question is whether

the TNFSF15monocyte eQTL is maintained in macrophages and is therefore likely to be rele-

vant to IBD pathogenesis. A previous study by Hedl et al reported association of the TNFSF15
risk haplotype SNP rs6478108:A (in phase with rs6478109:G, LD r2 0.917, S1 Fig) with

increased TNFSF15 expression in M-CSF-differentiated MDM [41]. In contrast, we observed

the opposite result in these cells (Fig 6), demonstrating ASE that was directionally concordant

with our findings in monocytes. Through further ASE assays in macrophages from multiple

differentiation and stimulation conditions, we demonstrated that the IBD protective allele is

consistently preferentially expressed. We corroborated our findings by mining publicly-avail-

able data from a recent eQTL study in MDM with and without Salmonella infection, confirm-

ing that the IBD risk allele is associated with lower MDM TNFSF15 expression [46]. We thus

clearly establish that, in both monocytes and macrophages, genetic predisposition to lower

TNFSF15 expression is associated with IBD risk.

The association we have identified may at first seem counterintuitive given the known func-

tions of TNFSF15. In IBD, TNFSF15 is generally considered an inflammatory marker, with

TNFSF15 expression levels increasing with IBD activity [32–37]. However, such observational

studies cannot distinguish causal effects from associations arising from confounding factors or

the consequences of IBD (reverse causation). In animal models of inflammatory disease

including colitis, asthma, arthritis, and experimental autoimmune encephalomyelitis, genetic

or antibody-mediated disruption of TNFSF15 signaling through its cognate receptor

TNFRSF25 (also known as DR3) generally leads to reduced pathology [29, 54, 59–63], but it is

important to remember that these animal studies usually measure disease course and are poor

models for disease susceptibility. At the cellular level, TNFSF15 generally promotes cytokines

associated with inflammation, such as IL-2 and IFNγ from T cells, and IL-13 and IL-5 from

ILC2 [26–28, 52, 64]. Indeed, we find that genetically-driven TNFSF15 enhances T cell activa-

tion in our in vitro assay. Despite this inflammatory role, studies have highlighted that

TNFSF15 may be more pleiotropic than originally thought, costimulating lymphocytes that

control both pro- and anti-inflammatory activities. Jia et al demonstrated a protective role for

TNFSF15-TNFRSF25 interaction in acute DSS colitis and clearance of gut Salmonella enterica
infection via maintenance of regulatory T cells [65], suggesting that TNFSF15 may be protec-

tive in certain contexts of intestinal inflammation. Additionally, as well as T cells and ILC2,

TNFSF15 can also costimulate group 3 innate lymphocytes (ILC3), which reside in the gut and

respond to TNFSF15 with enhanced IL-22 production [31, 66]. IL-22 promotes gut barrier

maintenance in both infectious and non-infectious contexts [67–69]. Thus, there is also the

potential for TNFSF15 to play a protective role in the gut through costimulation of ILC3.

Reduced gene expression driven by the IBD risk allele at TNFSF15 is in line with several

other IBD risk variants that reduce protein function and lead to intestinal barrier disruption.

For example, the T300A variant of ATG16L1 reduces autophagy in intestinal Paneth cells,

dampening antimicrobial activity [11–13]. Likewise, while multiple mechanisms have been

posited for the association of variants in the NOD2 locus with CD [70], disease-associated cod-

ing polymorphisms were found to reduce cellular responsiveness to peptidoglycan ligands [9]

and were associated with decreased expression of Paneth cell antimicrobial peptides [10] and

defective anti-bacterial responses by dendritic cells [8]. The reduction in monocyte and macro-

phage expression of TNFSF15 that we find associated with the IBD risk allele suggests that

TNFSF15 may also promote intestinal homeostasis in the pre-morbid state.
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Materials and methods

Additional methods are included in S1 Text.

Presentation of previous eQTL data

We present peripheral blood monocyte eQTLs for TNFSF15 from a previous study using sam-

ples from 39 healthy individuals and 80 patients with IBD [19], as well as a study using 45

patients with anti-neutrophil cytoplasmic antibody-associated vasculitis [18]. Gene expression

data was measured on the Affymetrix Human Gene 1.1 ST Array. Microarray mRNA expres-

sion was normalized by robust multiarray averaging using the oligo package [71] and adjusted

with PEER [72]. IBD patient and healthy control genotypes were measured using the Illumina

Human OmniExpress12v1.0 BeadChip, and vasculitis patients were genotyped using the Affy-

metrix SNP6.0 Array. eQTL testing was performed using a score test implemented in the

GGtools Bioconductor package [73]. Genomic locus plots were generated using the Gviz Bio-

conductor package [74] with RefSeq annotation for genes in the hg19 genome build.

Colocalization testing

Colocalization testing was performed using the coloc R package v2.3–1 [48]. We used the

coloc.abf function and the default priors (prior probability that a SNP is associated with trait

1 = 1 x 10−4, prior probability that a SNP is associated with trait 2 = 1 x 10−4, prior probability

that a SNP is associated with both traits = 1 x 10−5). Summary statistics for association of

TNFSF15 and TNFSF8 expression with genotype (regression coefficients and variances) were

calculated through linear regression (lm function in R) using the genotype and expression data

from our previous eQTL study of healthy controls and patients with IBD [19]. For the IBD

GWAS data, we used summary statistics for the European cohort from the GWAS plus Immu-

nochip trans-ancestry MANTRA meta-analyses by Liu et al [4] (downloaded from the Interna-

tional Inflammatory Bowel Disease Genetics Consortium’s website, url https://www.

ibdgenetics.org/, link “Latest combined GWAS and Immunochip trans-ancestry summary sta-

tistics”, file “IBD_trans_ethnic_association_summ_stats_b37.txt.gz”).

Sample collection

Peripheral blood samples from healthy volunteers were obtained through the Cambridge

BioResource. Ninety-six blood samples were taken from 90 separate volunteers recruited

based on relevant genotype at rs6478109 and/or rs4246905. All recruited individuals were Cau-

casian, between 18 and 65 years of age. Volunteers self-declared that they were free from auto-

immune disease, cancer and human immunodeficiency virus. No individuals took regular

systemic immunomodulatory therapy for at least one year before recruitment. During the

recruitment process, volunteer samples were grouped by genotype, and investigators were

blinded as to which group corresponded to which genotype. Derived numeric data from

experiments utilizing Cambridge BioResource samples are included in S1 Data.

Whole blood processing

Whole blood was collected in CPDA tubes and passed over a Histopaque-1077 (Sigma

Aldrich) gradient to separate peripheral blood mononuclear cells (PBMC). Where indicated,

cell types were separated first into the CD14+ monocyte fraction and CD14- fraction by posi-

tive selection with human CD14 MicroBeads and LS columns (Miltenyi Biotec), according to

the manufacturer’s protocol. The negative fraction was then enriched for CD4+ T cells or

CD8+ T cells with human CD4 or CD8 MicroBeads (Miltenyi Biotec) in the same manner. For
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CD8-depleted PBMC, cells were separated with CD8 MicroBeads (Miltenyi Biotec) and the

negative fraction collected. Purity of separated cell subsets was examined by flow cytometry as

described in the “Cell subset purity QC” section. For eQTL and ASE measurements, eighty

monocyte samples were sorted for use in various assays, all with over 60% purity and a median

purity of 74%; thirty-five CD4+ T cell samples were sorted, all with over 92% purity and a

median purity of 97%; thirty-four CD8+ T cell samples were sorted, all with purity over 70%

and a median purity of 90%; sixteen PBMC samples were depleted of CD8+ T cells, all demon-

strating less than 7% CD8+ T cells remaining. One CD8-depleted PBMC sample was excluded

on the basis of a CD8-intermediate CD3+ population composing 13% of the PBMC population

after depletion.

Cell subset purity QC

Purity of cell subsets was determined by flow cytometry. Cells were blocked with FcR Blocking

Reagent (Miltenyi) and stained with anti-human CD14-PE (BD Biosciences); anti-human

CD3-AmCyan, -FITC or–PE (clone SK7 or UCHT1, BD Biosciences); anti-human CD4-FITC

(clone RPA-T4, BD Biosciences); and/or anti-human CD8-APC (clone RPA-T8, BD Biosci-

ences) or -eFluor 450 (clone SK1, eBioscience). Flow cytometry was performed on a BD LSR

Fortessa (BD Biosciences) and data analyzed in FlowJo (FlowJo, LLC).

In vitro cell stimulations

All stimulations took place in complete medium, composed of RPMI with 10% FCS, 10 mM

HEPES, 1x MEM non-essential amino acids, 1 mM sodium pyruvate, 1x GlutaMAX, 100 U/

mL penicillin and 0.1 mg/mL streptomycin (Sigma or Gibco). Monocytes were stimulated

with 100 ng/mL LPS (Sigma), plate-bound immune complex (as previously described [52]), or

100 μg/mL intracellular polyinosinic:polycytidylic acid (poly(I:C)), prepared with 1 mg/mL

high molecular weight poly(I:C) mixed 1:1 with LyoVec transfection reagent (Invivogen) at

RT for 15 minutes. Where indicated, 1 μg/mL cycloheximide or 5 μg/mL actinomycin D

(Sigma) was added to cell cultures. T cells were stimulated with Dynabeads Human T-Activa-

tor CD3/CD28 (Life Technologies) at a 1:1 ratio of beads:cells. For the PBMC proliferation

assay, five million CD8- cells were stained with Cell Proliferation Dye eFluor 670 (eBioscience),

according to the manufacturer’s instructions. These cells were stimulated for 48 hours with

1 μg/mL anti-CD3 (OKT3), with addition of 10 μg/mL blocking anti-TNFSF15 monoclonal

antibody (1A9, described under Soluble cytokine measurements) where indicated.

Monocytes were differentiated into monocyte-derived macrophages in the presence of

M-CSF or GM-CSF. For M-CSF macrophages, cells were grown in 10 ng/mL recombinant

human M-CSF (R and D Systems) for 7 days, adding half the volume of media with 30 ng/mL

M-CSF to replenish the cytokine on day 5. For GM-CSF macrophages, monocytes were grown

in 50 U/mL recombinant human GM-CSF (Peprotech) for 5 days. Where indicated, macro-

phages were stimulated with 10 ng/mL LPS for 4 hours. One sample recruited for monocyte-

derived macrophage studies was excluded due to poor RNA yield before any measurements

were made.

Nucleic acid extraction and qPCR for samples

RNA and DNA from ex vivo and cultured cells was extracted using the AllPrep DNA/RNA

Mini Kit (or RNeasy Mini Kit for extracting RNA only), using on-column DNase digestion

with the RNase-Free DNase Set (Qiagen). RNA was reverse-transcribed to cDNA using the

SuperScript VILO cDNA Synthesis Kit (Life Technologies). qPCR reactions were performed

with Taqman Gene Expression Master Mix and Taqman Gene Expression Assays for
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TNFSF15 (Hs00270802_s1) or Beta-2-Microglobulin (B2M, Hs00984230_m1) (Life Technolo-

gies) on an Applied Biosystems 7900HT Fast Real-Time PCR System (Life Technologies) or

CFX384 Touch Real-Time PCR Detection System (BioRad). All reactions were performed in

triplicate, and the median TNFSF15 Ct value was subtracted from the median B2M Ct value

for each sample to generate ΔCt values representing log expression relative to B2M.

qPCR eQTL analysis

Linear regression test statistics were calculated in R to estimate the effect of each additional

copy of the minor (IBD protective) allele on gene expression. To test for an interaction

between genotype and stimulation condition, a linear model with coefficients for genotype,

stimulation and genotype x stimulation was fitted.

Genotyping

Samples were genotyped using Taqman SNP Genotyping Assays (rs6478109, C___1305297_10;

rs4263839, C____120268_10; rs4246905, C____363307_20; rs7848647, C__11277159_10;

rs6478108, C____170492_10) and Taqman Genotyping Master Mix (Life Technologies) accord-

ing to the manufacturer’s protocol on an Applied Biosystems 7900HT Fast Real-Time PCR Sys-

tem (Life Technologies) or CFX384 Touch Real-Time PCR Detection System (BioRad).

Allele-specific expression (ASE)

ASE in heterozygous genomic DNA or reverse-transcribed cDNA from the same individual

was measured by qPCR. Where ASE was measured in multiple conditions using cells from the

same individuals, one genomic DNA sample from each individual was measured concurrently

with cDNA samples from multiple conditions. First, the intronic region containing the target

SNP was amplified from DNA using the primers and PCR conditions listed in S4 Table.

Amplified regions were gel purified. A standard curve was constructed by mixing amplified

genomic DNA samples from homozygous individuals 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, and 1:8. Sam-

ples were then measured by qPCR in triplicate reactions using Taqman SNP Genotyping

Assays for rs4263839 (C____120268_10) or rs4246905 (C____363307_20) and Taqman Gene

Expression Master Mix on an Applied Biosystems 7900HT Fast Real-Time PCR System (Life

Technologies) or CFX384 Touch Real-Time PCR Detection System (BioRad). Allelic ratios

were calculated from VIC and FAM Ct values as described in S1 Text. Unpaired Welch’s t-test

statistics were calculated using GraphPad Prism Software or R. We used two intronic SNPs,

rs4246905 and rs4263839 (the latter of which is in LD r2 = 0.977 with rs6478109 and is the

most linked of all transcribed SNPs) to examine ASE of TNFSF15. Examination of the effect

size estimates obtained from assays with each of the two SNP probes on a subset of samples

from Fig 2C revealed similar detection of ASE but a slightly lower estimate by the rs4263839

probe (S5B Fig). For this reason, we do not recommend directly comparing effect sizes

between samples measured with different probes.

Soluble cytokine measurements

A mouse monoclonal antibody against human TNFSF15 (clone 1A9) was generated through

immunizing mice with human TNFSF15 and screening supernatants for binding TNFSF15

transfected 293T cells. The 1A9 clone also blocks soluble TNFSF15 binding to TNFRSF25 and

TNFSF15 costimulation of human T cell activation ex vivo [75].

Soluble TNFSF15 in supernatants of stimulated cells was measured by custom Bio-Plex

assay. Capture beads were created by conjugating anti-human TNFSF15 antibody (clone 1A9)
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to Bio-Plex Pro Magnetic COOH beads, region 27, using the Bio-Plex Amine Coupling Kit

(BioRad) with 10 μg antibody per reaction, according to the manufacturer’s instructions. Cell

culture supernatant assays were performed with 2500 beads per well for capture and 1 μg/mL

biotinylated polyclonal rabbit anti-human TNFSF15 (Peprotech) for detection, using the Bio-

Plex Pro Reagent Kit (BioRad) and following the manufacturer’s protocol. Data was collected

on a Bio-Plex 200 or Bio-Plex MAGPIX Multiplex Reader (BioRad). Cell culture supernatant

TNFSF15 concentrations were calculated using a standard curve of recombinant human

TNFSF15 (Peprotech).

Serum TNFSF15 levels were also measured by custom Bio-Plex assay. Capture beads were

created exactly as described for supernatant cytokine measurements but polyclonal rabbit

anti-human TNFSF15 antibody (Peprotech) was used for conjugation to Bio-Plex Pro Mag-

netic COOH beads, region 27, with 8.5 μg antibody per reaction. Assays were run with samples

diluted 1 in 4 in Sample Diluent from the Bio-Plex Pro Reagent Kit (BioRad). Values below the

detection limit of the assay were set to 0. Values above the detection limit of the assay were

excluded, and this is indicated in the figure legend. For genotype association testing, serum

TNFSF15 protein levels were inverse-rank normalized prior to linear regression.

Inflammatory cytokines in the supernatants of stimulated monocytes were measured using

the Human ProInflammatory 9-Plex Tissue Culture Kit (MesoScale Diagnostics) at the Core

Biochemical Assay Laboratory in Cambridge University Hospitals or using Bio-Plex Pro

reagents (BioRad), according to the manufacturer’s protocol. For plotting on a log-scale graph,

2 undetectable IL-10 measurements were set to positive values below the lowest value detected.

Mann-Whitney test statistics were calculated using GraphPad Prism Software.

Cell surface TNFSF15 measurements

Monocyte surface TNFSF15 expression was measured by flow cytometry. Cells were treated

with human FcR Blocking Reagent (Miltenyi) for 5 minutes in PBS and then stained with

LIVE/DEAD Fixable Aqua Dead Cell Stain Kit (Invitrogen) and either anti-TNFSF15 (clone

1A9) Alexa-Fluor 647 or mouse IgG2a Alexa-Fluor 647 (BD Biosciences) as an isotype control.

Cells were analyzed on a BD LSRFortessa. Mann-Whitney test statistics were calculated using

GraphPad Prism Software.

Ethics statement

The use of genotyped human peripheral blood samples in this study was approved by the

National Research Ethics Service, Cambridgeshire 2 Research Ethics Committee (08/H0308/

176). All subjects provided written informed consent prior to inclusion in the study.

Data mining

The data used for corroborating eQTL evidence described in this manuscript were obtained

from the GTEx Portal on 10 February 2018 and from the IMMUNPOP browser (http://132.

219.138.157/nedelec/eQTL/ and [46]) on 7 March 2018. Regulatory information about the

TNFSF15 promoter region was visualized in the UCSC genome browser (http://genome.ucsc.

edu/ and [76], hg19 build) on 17 Feb 2018. Tracks included transcription factor binding sites

from ENCODE transcription factor ChIP-seq of 161 factors across a variety of cell types,

DNase hypersensitivity signal measured by ENCODE/UW, and CTCF and histone ChIP-seq

profiles from ENCODE/BROAD [77]. CAGE data for enhancer identification were down-

loaded from the ZENBU browser (http://fantom.gsc.riken.jp/zenbu/gLyphs/#config=

dXO5cTaJBZiiw73fJq2oGD;loc=hg19::chr9:117566249..117571251+ and [21, 78]), on 17 Feb-

ruary 2018.
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Supporting information

S1 Text. Supplementary discussion and methods.

(PDF)

S1 Fig. rs6478109 is a monocyte TNFSF15 eQTL in healthy controls and inflammatory

disease cohorts. (A) Plots depict monocyte TNFSF15mRNA expression versus rs6478109

genotype in healthy controls and IBD patients (genotyping by Illumina Human OmniEx-

press12v1.0 BeadChip, gene expression by Affymetrix Human Gene ST 1.1 microarrays). (B)

Table depicts results of LD calculation and haplotype phasing using 1000 Genomes Phase 3

European (EUR) and East Asian (EAS) cohorts for rs6478109 and rs6478108. Phasing is writ-

ten as rs6478109 allele 1 in phase with rs6478108 allele 1 / rs6478109 allele 2 in phase with

rs6478108 allele 2. (C) As (A), plots depict TNFSF15mRNA expression versus rs6478108 geno-

type in healthy controls (n = 39) and IBD patients (n = 80) (genotyping by Illumina Human

OmniExpress12v1.0 BeadChip) and patients with ANCA-associated vasculitis (n = 45) (geno-

typing by Affymetrix SNP 6.0). rs6478109 was not present on the Affymetrix SNP 6.0 genotyp-

ing platform, and thus rs6478108 was used as a proxy SNP for examining the eQTL in the

AAV cohort. (D) Ex vivomonocyte TNFSF15 expression values from Fig 1B plotted by

rs6478108 genotype (TT, n = 9; CT, n = 17; CC, n = 9).

(EPS)

S2 Fig. The IBD-protective rs6478109:A allele is not associated with monocyte TNFSF8
expression. Regional association plots for IBD (European ancestry cohort from Liu et al [4])

and TNFSF8 expression (n = 39 healthy individuals and 80 IBD patients). LD is colored with

reference to the most associated SNP within each plot.

(EPS)

S3 Fig. TNFSF15 expression is induced upon monocyte and T cell stimulation. (A) Human

peripheral blood monocytes were left unstimulated (null), or were stimulated with 100 ng/mL

LPS, cross-linked immune complex, LyoVec transfection reagent control, or LyoVec with

100 μg/mL poly(I:C) for the indicated times. TNFSF15mRNA was measured by qPCR relative

to B2Mwith expression reported as ΔCt (left); secreted protein was measured in the super-

natant by custom Bio-Plex assay (right). Plots are representative of at least 2 independent

experiments each. (B) As (A) for CD4+ and CD8+ T cells stimulated with anti-CD3/anti-

CD28-coated beads at a ratio of 1:1, beads:cells. The plot on the right shows a longer stimula-

tion time-course for both T cell subsets.

(EPS)

S4 Fig. Comparison of eQTL effect sizes in unstimulated and stimulated monocytes. Effect

sizes estimated by linear regression (beta coefficients) and their standard errors are plotted for

monocyte eQTLs from Fig 1B and Fig 2A.

(EPS)

S5 Fig. Genomic regions of interest for allele-specific expression assays. (A) The TNFSF15
gene region was visualized in the UCSC genome browser (hg19 genome build). TNFSF15 gene

position is from RefSeq. SNPs of interest are underlined in the same colors as Fig 4: rs6478109

eQTL SNP in blue, and rs4246905 and rs4263839 SNPs used for allele-specific expression

(ASE) measurements in green and orange, respectively. Binding sites for primers used to

amplify pre-mRNA for ASE measurements are indicated. (B) Probes for rs4246905 and

rs4263839 were used to measure ASE in the same four samples of immune complex-stimulated

monocytes (samples included in Fig 2C). 95% confidence interval for difference in mean
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log2(allelic ratio) between genomic DNA and cDNA calculated from Welch’s t-test.

(EPS)

S6 Fig. rs6478109 genotype is not associated with TNFSF15 protein expression in serum or

monocyte expression of other inflammatory cytokines. (A) Serum TNFSF15 was measured

in rs6478109 genotyped individuals (GG, n = 22; GA, n = 26; AA, n = 19; two additional AA

individuals were excluded due to measurements above the detectable range of the standard

curve). Line denotes the median; p value from linear regression on inverse-rank normalized

values. (B) Inflammatory cytokines were measured in supernatants of stimulated monocytes

from rs6478109 homozygotes (immune complex, n = 4 per genotype; LPS, n = 7 per genotype).

No significant differences between genotypes by Mann-Whitney test. (C) Selected cytokines

from (B) were further examined in a second cohort (n = 12 per genotype). No significant dif-

ferences between genotypes by Mann-Whitney test.

(EPS)

S7 Fig. Chromatin modifications and transcription factor binding at the TNFSF15 pro-

moter. The promoter region of TNFSF15was visualized in the UCSC genome browser (http://

genome.ucsc.edu/ and [76], hg19 build). TNFSF15 gene position is from RefSeq. SNPs of inter-

est are indicated. Genome regulatory marks from ENCODE [77] are shown. Transcription fac-

tor binding sites are from ENCODE transcription factor ChIP-seq of 161 factors across a

variety of cell types with consensus motifs marked in green. Histogram tracks represent mea-

surements in primary human monocytes. “DHS” denotes raw DNase hypersensitivity signal

measured by ENCODE/UW. CTCF and histone ChIP-seq profiles highlighted in orange are

from ENCODE/BROAD. “Control” indicates sequencing of ChIP input control DNA.

Enhancers and transcriptional activity identified by Cap Analysis of Gene Expression

(CAGE) were downloaded from the ZENBU browser view associated with Baillie et al [21]

(http://fantom.gsc.riken.jp/zenbu/gLyphs/#config=dXO5cTaJBZiiw73fJq2oGD;loc=hg19::

chr9:117566249..117571251+), which includes FANTOM5 consortium data [78]. CAGE-iden-

tified enhancers across multiple human cell types and monocyte-derived macrophages, as well

as transcriptional activity measurements by CAGE, are highlighted in turquoise.

(EPS)

S8 Fig. Immunophenotyping gating strategies. Immunophenotyping gating strategies are

depicted for (A) basic T cell subsets, (B) Th effector cell subsets, (C) Treg, (D) B cells, and (E)

monocytes, dendritic cells, and NK cells.

(EPS)

S9 Fig. Immunophenotypes are not associated with rs6478109 genotype. Age- and sex-

matched rs6478109 homozygotes were immunophenotyped for 39 different peripheral blood

parameters. Between 6 and 19 pairs were examined for each subset. No immune cell subsets

were found to be differentially abundant between genotypes by Wilcoxon test.

(EPS)

S10 Fig. rs6478109-TNFSF15 eQTL in MDM from Nedelec et al. eQTLs in M-CSF-differen-

tiated MDM with and without infection [46]. Plots were generated using the IMMUNPOP

browser at http://132.219.138.157/nedelec/eQTL/

(EPS)

S11 Fig. LD at the TNFSF15 locus. Regional linkage disequilibrium (r2) plot of genetic vari-

ants +/- 3 kbp from rs6478109 calculated using 1000 Genomes Phase 3 EUR cohort.

(EPS)
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S1 Table. rs6478109-TNFSF15 eQTL statistics from measurements on resting and stimu-

lated cells from bioresource volunteers.

(PDF)

S2 Table. Allele-specific expression statistics from measurements on stimulated cells from

rs6478109 heterozygous bioresource volunteers.

(PDF)

S3 Table. Evaluation of potential candidate SNPs at the TNFSF15 IBD susceptibility locus.

(PDF)

S4 Table. Primers used for pre-amplification in allele-specific expression assays.

(PDF)

S5 Table. Antibody panels for immunophenotyping.

(PDF)

S1 Data. Numeric data from eQTL, ASE, protein expression and T cell activation measure-

ments underlying Figs 1B, 2, 3A, 3B, 4, 5 and 6.

(ZIP)
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