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SUMMARY

The PI3K signaling pathway regulates cell growth
and movement and is heavily mutated in cancer.
Class I PI3Ks synthesize the lipid messenger
PI(3,4,5)P3. PI(3,4,5)P3 can be dephosphorylated
by 3- or 5-phosphatases, the latter producing
PI(3,4)P2. The PTEN tumor suppressor is thought to
function primarily as a PI(3,4,5)P3 3-phosphatase,
limiting activation of this pathway. Here we show
that PTEN also functions as a PI(3,4)P2 3-phospha-
tase, both in vitro and in vivo. PTEN is a major
PI(3,4)P2 phosphatase in Mcf10a cytosol, and loss
of PTEN and INPP4B, a known PI(3,4)P2 4-phospha-
tase, leads to synergistic accumulation of PI(3,4)P2,
which correlated with increased invadopodia in
epidermal growth factor (EGF)-stimulated cells.
PTEN deletion increased PI(3,4)P2 levels in a mouse
model of prostate cancer, and it inversely correlated
with PI(3,4)P2 levels across several EGF-stimulated
prostate and breast cancer lines. These results point
to a role for PI(3,4)P2 in the phenotype caused by
loss-of-function mutations or deletions in PTEN.

INTRODUCTION

The class I PI3K-signaling pathway is part of the large regulatory

network that allows various cell surface receptors to control cell

function (Hawkins and Stephens, 2015; Vanhaesebroeck et al.,

2010). This pathway plays a particularly important role in the

mechanisms that allow growth factor receptors to regulate cell
566 Molecular Cell 68, 566–580, November 2, 2017 ª 2017 The Auth
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growth. Growth factors stimulate class I PI3Ks to catalyze the

phosphorylation of the membrane lipid PI(4,5)P2 to form

PI(3,4,5)P3. PI(3,4,5)P3 is retained in the lipid bilayer and pro-

motes the translocation and/or activation of a variety of effectors

that recognize the head group of this lipid with appropriate affin-

ity and specificity. The best studied of these effectors are the PH

domain-containing serine/threonine protein kinases PDK-1 and

AKT1/2, which indirectly regulate the mTORC1 complex and

promote anabolic growth and survival (Dibble and Cantley,

2015; Engelman et al., 2006). This pathway is heavily mutated

in human cancers, harboring several prevalent oncogenes,

including genes encoding PI3K subunits and AKT, and also

several tumor suppressors, for example, PTEN and INPP4B (Fru-

man and Rommel, 2014; Mayer and Arteaga, 2016; Okkenhaug

et al., 2016; Thorpe et al., 2015).

PI(3,4,5)P3 can be dephosphorylated by 3- and 5-phospha-

tases to form PI(4,5)P2 and PI(3,4)P2, respectively. The best-

studied 3-phosphatase is PTEN, and loss-of-function mutants

cause significant elevations in PI(3,4,5)P3 in various cell and

animal models (Hollander et al., 2011). The major 5-phospha-

tases that act on PI(3,4,5)P3 are less clear; good evidence

has been provided that SHIP1 and -2 can regulate PI(3,4,5)P3

levels in leukocytes and other tissues, but recent studies suggest

other 5-phosphatases may also play a role, depending on cell

context (Dyson et al., 2012; Erneux et al., 2011; Ooms

et al., 2015).

The relative flux through 3- versus 5-dephosphorylation of

PI(3,4,5)P3 is also unclear, as is the physiological significance

of dephosphorylation via either route. Removal of the 5-phos-

phate from PI(3,4,5)P3 produces PI(3,4)P2, and recent evidence

points to additional signaling roles for this lipid. PI(3,4)P2 can

bind to some effectors with similar affinity to PI(3,4,5)P3, for

example, AKT or DAPP1, but specific roles for this lipid

have also been defined, particularly in the regulation of actin
ors. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. An HPLC-MS Method for Mea-

suring PI(3,4)P2 and PI(4,5)P2

(A) An illustration of the reaction of ozone with

methylated stearoyl/arachidonoyl PI(4,5)P2.

(B) HPLC-MS traces derived from human plate-

lets, showing the separation of molecules derived

from endogenous stearoyl/arachidonoyl PI(3,4)P2

and stearoyl/arachidonoyl PI(4,5)P2. Note:

PI(3,5)P2 migrates with a slightly greater retention

time than PI(4,5)P2 in this system, but it is present

at such low endogenous levels relative to PI(4,5)P2

that it is below the levels of detection.

(C) A typical HPLC-MS trace derived from the

separation of molecules derived from chemically

synthesized d6-stearoyl/arachidonoyl PI(3,4)P2

and d6-stearoyl/arachidonoyl PI(4,5)P2 added as

internal standards to a human platelet cell extract.

Methods: Lipid extracts were prepared, treated

with TMS-diazomethane and ozone, and the re-

sulting molecules were separated by HPLC on a

C18 column, as described in the STAR Methods.

Supporting information is presented in Figure S1.
mesh-works associated with endocytic structures, lamellipodia,

and podosomes/invadopodia (Hawkins and Stephens, 2016; Li

and Marshall, 2015). Further, INPP4B has been recently identi-

fied as a conditional tumor suppressor, and a plausible mecha-

nism of action has been constructed based on its ability to act

as a specific PI(3,4)P2 4-phosphatase, thus limiting the activation

of AKT (Fedele et al., 2010; Gewinner et al., 2009).

A major problem with defining the impact of specific phospha-

tases in shaping the PI(3,4,5)P3 and PI(3,4)P2 signals generated

by activation of class I PI3Ks is current technical limitations in

their quantitative measurement. Historically, the most accurate

method for measuring these lipids has been radiolabelling, lipid

extraction, deacylation, and separation of the relevant head

groups by anion-exchange high-performance liquid chromatog-

raphy (HPLC), which is laborious, requires substantial amounts

of radiolabelled precursors, and cannot be applied to tissue

biopsies. Recently, we described an approach to measure

PI(3,4,5)P3 by HPLC-mass spectrometry (MS) that circumvents

many of these issues, but this method does not distinguish be-

tween regio-isomers of the same mass, for example, PI(3,4)P2

and PI(4,5)P2 (Clark et al., 2011).

We describe here an extension to our MS method, which

allows HPLC separation and measurement of PI(3,4)P2 and

PI(4,5)P2. We then applied this and existing methods to execute

a systematic screen for the impact of gene deletion and/or small

interfering RNA (siRNA) suppression of known phosphoinositide
Molecula
phosphatases on shaping PI(3,4,5)P3 and

PI(3,4)P2 signals in response to growth

factor stimulation. These and follow-up

studies led us to discover that PTEN

acts as a major PI(3,4)P2 3-phosphatase,

in addition to its known role as a PI(3,4,5)

P3 3-phosphatase. Moreover, deletion of

PTEN in a mouse model of prostate can-

cer results in very high levels of PI(3,4)P2

accumulation in hyperplasic epithelial
cells, revealing another mechanism by which PTEN acts as a

tumor suppressor.

RESULTS

A Method to Measure PI(3,4)P2 and PI(4,5)P2 by
HPLC-MS
We have previously shown that methylation of the acidic

phosphate groups of polyphosphoinositides with trimethylsilyl

(TMS)-diazomethane allows sensitive detection of these mole-

cules by HPLC-electrospray ionization-mass spectrometry

(HPLC-ESI-MS) (Kielkowska et al., 2014). This method uses

reverse-phase chromatography on a C4 column, which does

not allow separation of PI(3,4)P2 and PI(4,5)P2. We have now

developed a modification to this method based on ozone-cata-

lyzed cleavage of C = C double bonds to reduce acyl chain

length (Figure 1A). Chromatography of these shortened deriva-

tives on a C18-amide column yields a sufficiently good separa-

tion of molecules derived from the most common species of

PI(3,4)P2 and PI(4,5)P2 found in mammalian tissues (C38:4;

stearoyl/arachidonoyl) to allow an independent estimate of their

relative amounts (Figures 1B and 1C). This method was able to

detect PI3K-dependent accumulation of PI(3,4)P2 in thrombin-

stimulated human platelets (Figure 1B), a response previously

defined using traditional radiolabeling approaches (Giuriato

et al., 2003; Rittenhouse, 1996). Further, the routine inclusion
r Cell 68, 566–580, November 2, 2017 567



of synthetic d6-labeled standards allowed us to accurately quan-

tify the amounts of endogenous C38:4 PI(3,4)P2 and PI(4,5)P2 in

our biological extracts (Figures S1A and S1B).

Identification of the Major Phosphatases Controlling
PI(3,4,5)P3 and PI(3,4)P2 Accumulation in
EGF-Stimulated Mcf10a Cells
We disrupted expression of phosphoinositide phosphatases in

Mcf10a cells, and then we used our new and existing HPLC-

MS methods to measure the effect on epidermal growth factor

(EGF)-stimulated accumulation of PI(3,4,5)P3 and PI(3,4)P2.

Initially, we employed an siRNA screen directed against all phos-

phoinositide phosphatases previously reported to act on these

two lipids and expressed at significant levels in these cells

(INPP5B, INPP5E, INPP5F, INPP5J, INPP5K, SHIP1, SHIP2,

SYNJ1/2, OCRL, and PTEN; Balla, 2013; Kiselev et al., 2015),

and we focused on measuring PI(3,4,5)P3 in both starved and

then EGF-stimulated wild-type (WT) cells (Figure S2A). We also

evaluated the impact of suppressing selected phosphatases

(SHIP1, SHIP2, INPP4A, and INPP4B) in a PTEN�/� isogenic

cell line (PTEN-knockout [KO]) (Figure S2A). We then followed

up these initial studies by disrupting expression of INPP4B and

SHIP2 in both WT and PTEN-KO cells by CRISPR/Cas9-medi-

ated gene editing and measuring PI, PIP, PI(3,4)P2, PI(4,5)P2,

and PI(3,4,5)P3 in selected starved and EGF-stimulated cells.

In WT cells, EGF stimulated a rapid and transient increase in

the levels of PI(3,4,5)P3 (Figure 2A), a small transient increase

in PIP (Figure S2B), and barely detectable changes in PI(3,4)P2

(Figure 2B) and PI(4,5)P2 (Figure 2C). These responses are

consistent with much previous work describing EGF stimulation

of PI3Ks and PIPKs under these conditions (Anderson et al.,

2016; Jackson et al., 1992). The only genetic manipulations

that reliably altered the PI(3,4,5)P3 response to EGF were

knockdown (KD) or deletion of PTEN or SHIP2 (Figures 2A and

S2A). In each case, the effect was relatively modest, causing

an �25%–50% increase in peak PI(3,4,5)P3 accumulation at

1 min. However, siRNA knockdown of SHIP2 in PTEN-KO cells

or CRISPR/Cas9-mediated deletion of SHIP2 expression in

PTEN-KO cells resulted in a substantial, synergistic elevation

in peak PI(3,4,5)P3 levels (3- to 4-fold), though in each case

the PI(3,4,5)P3 response remained transient, with levels falling

within 5–15 min of EGF stimulation (Figure 2A). These results

clearly identify PTEN and SHIP2 as phosphatases that act on

PI(3,4,5)P3 during EGF stimulation, but they suggest that each

can substantially compensate for loss of the other.

We also note that loss of PTEN caused an apparent drop in the

levels of PI(4,5)P2 (Figure 2C) and a small increase in PIP (Fig-

ure S2B). However, these changes were confined to the C38:4

species of these lipids and were not reflected in the total PIP2

and PIP pools (data not shown), and, therefore, they probably

result from an indirect effect on acyl composition.

Combined knockdown of INPP4A and B did not produce a

measurable increase in the levels of PI(3,4)P2 under either starved

or EGF-stimulated conditions (Figure 2B). This was surprising,

given that INPP4A and B are thought to be the major phospha-

tases controlling the levels of PI(3,4)P2 inmammalian cells (Balla,

2013). However, knockdown of INPP4A/B in PTEN-KO cells pro-

duced a very large accumulation of PI(3,4)P2 in response to EGF
568 Molecular Cell 68, 566–580, November 2, 2017
(Figure 2B). The peakPI(3,4)P2 accumulationwas at 5min, reach-

ing levels �10-fold greater than the peak levels of PI(3,4,5)P3 in

the samecells and amounting to�20%of the total PIP2 pool (Fig-

ures 2A–2C).

We used CRISPR/Cas9 editing in PTEN-KO cells to eliminate

expression of INPP4B. EGF stimulated very similar accumula-

tions of PI(3,4)P2 in these cells compared to our analogous

siRNA knockdown studies (Figure 2B). Further, siRNA knock-

down of INPP4A in these cells did not increase levels of

PI(3,4)P2 (Figure 2B), indicating INPP4B and not INPP4A was

acting together with PTEN to control the levels of this lipid.

EGF-stimulated EGF receptor (EGFR) auto-phosphorylation

was very similar across the relevant knockdown and knockout

cell lines (Figure S2C). Further, we saw no evidence of compen-

satory increases in phosphatase expression in lines in which

expression of PTEN, INPP4B, or SHIP2 had been deleted (Fig-

uresS3AandS3B). Interestingly, however, expression of INPP4B

was significantly reduced in the PTEN-KO line (Figure S3B),

possibly contributing to the small elevation in PI(3,4)P2 consis-

tently seen in these cells across multiple experiments.

PI(3,4,5)P3 and PI(3,4)P2 Accumulate in the Plasma
Membrane of EGF-Stimulated Mcf10a Cells
We used confocal fluorescence imaging with EGFP-PH-GRP1

and mCherry-PH-TAPP1 reporters to visualize the PI(3,4,5)P3

and PI(3,4)P2 pools in WT, PTEN-KO, SHIP2-KD, SHIP2-

KD,PTEN-KO, and INPP4A/B-KD,PTEN-KO cells. EGF stimu-

lated clear accumulation of the PI(3,4,5)P3 reporter in the

proximity of the plasma membrane in all cells examined (Fig-

ure 3A), and EGF stimulated clear accumulation of the

PI(3,4)P2 reporter in the proximity of the plasma membrane in

INPP4A/B-KD,PTEN-KO cells (Figure 3B). Further, this pattern

of accumulation of the PI(3,4)P2 reporter in these cells was

confirmed by immunofluorescence using an anti-PI(3,4)P2 anti-

body (Figure 3C).

The Accumulation of PI(3,4)P2 in EGF-Stimulated
Mcf10a Cells Is Class I PI3K Dependent
Several alternative pathways for cell surface receptor-stimulated

accumulation of PI(3,4)P2 have been suggested, including

5-dephosphorylation of PI(3,4,5)P3, 3-phosphorylation of PI4P

by class I PI3Ks, 3-phosphorylation of PI4P by class II

PI3Ks, or sequential phosphorylation from PI3P by unidentified

kinases (Posor et al., 2015; Rittenhouse, 1996; Stephens et al.,

1993). We used a combination of experimentation and mathe-

matical modeling to identify the major pathways that generate

PI(3,4,5)P3 and PI(3,4)P2 in our system.

We first evaluated the effect of a combination of small mole-

cule inhibitors with widely different potencies for the inhibition

of class I PI3Ka/b versus class II PI3Ka/b (PIK75 and TGX115;

see Figure 4A for relevant IC50s). These molecules inhibited the

EGF-stimulated accumulation of PI(3,4,5)P3 and PI(3,4)P2 in

INPP4A/B-KD,PTEN-KO cells with very similar potency (Fig-

ure 4A), suggesting both were derived from the same source

and that this source was a class I PI3K. This role for a class I

PI3K was supported by the sensitivity of both PI(3,4,5)P3 and

PI(3,4)P2 accumulation to PI-103 and the PI3Ka-selective inhib-

itor BYL-719 (Figures S4A and S4B). The sensitivity to BYL-719



Figure 2. The Identification of Phosphatases that Shape PI(3,4,5)P3 and PI(3,4)P2 Signals in EGF-Stimulated Mcf10a Cells

(A) PI(3,4,5)P3 levels in Mcf10a cells treated with EGF (10 ng/mL) for 0, 1, 5, or 15 min.

(B) PI(3,4)P2 levels in Mcf10a cells treated with EGF (10 ng/mL) for 0, 1, 5, or 15 min.

(C) PI(4,5)P2 levels in Mcf10a cells treated with EGF (10 ng/mL) for 0, 1, 5, or 15 min.

Methods: Isogenic WT or PTEN�/� Mcf10a cells were genetically manipulated through siRNA-mediated suppression or CRISPR-gene editing, as indicated, then

starved and stimulated with EGF. Measurement of PI(3,4,5)P3 or PI(3,4)P2 and PI(4,5)P2 was performed by HPLC-MS using C4 or C18 columns, respectively, and

data represent means ± SD of 3 biological replicates (for siRNA suppression in WT or PTEN-KO cells) or 3 technical replicates (for PTEN-INPP4B-KO or PTEN-

SHIP2-KO cells).

Supporting information is presented in Figures S2 and S3.
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Figure 3. The Subcellular Location of PI(3,4,5)P3 and PI(3,4)P2 in EGF-Stimulated Mcf10a Cells

(A) Confocal fluorescent images of WT or PTEN�/� Mcf10a cells stably expressing the EGFP-GRP1-PH domain. Cells were treated with the indicated siRNA,

starved, and then stimulated with EGF (10 ng/mL) for 0 or 300 s.

(B) Confocal fluorescent images of WT or PTEN�/� Mcf10a cells stably expressing the mCherry-TAPP1-PH domain. Cells were treated with the indicated siRNA,

starved, and then stimulated with EGF (10 ng/mL) for 0 or 300 s.

(C) Wide-field fluorescent images of WT or PTEN�/� Mcf10a cells treated with the indicated siRNA, starved, and then stimulated with EGF (10 ng/mL) for 0 or

300 s. PI(3,4)P2 was visualized with an anti-PI(3,4)P2 antibody.
is in agreement with previous studies indicating EGF signals pri-

marily through PI3Ka in these cells (Juvin et al., 2013). Further,

the lack of involvement of class II PI3Ks in generating PI(3,4)P2

responses was confirmed by siRNA knockdown of these en-

zymes (Figures S4C and S4D).

The identification of a class I PI3K as the source of PI(3,4)P2

accumulation in these experiments implied a major role for

5-phosphatase-mediated dephosphorylation of PI(3,4,5)P3. Sur-

prisingly, given that we had demonstrated an involvement of

SHIP2 in regulating PI(3,4,5)P3 levels, siRNA knockdown of

INPP4A/B caused similar accumulations of PI(3,4)P2 in PTEN-

KO cells and PTEN-KO cells in which SHIP2 expression had

also been deleted by CRISPR/Cas9, though possibly with

slightly slower kinetics (Figure 2B). We reasoned this may be

due to redundancy among multiple PI(3,4,5)P3 5-phosphatases,

which could maintain flux through 5-dephosphorylation in the

presence of elevated levels of PI(3,4,5)P3 (caused by the loss

of both SHIP2 and PTEN). We therefore investigated the effect

of multiple knockdowns of known 5-phosphatases in INPP4A/

B-KD,PTEN-SHIP2-KO cells. Of the combinations examined,

only combined knockdown of SHIP1, SYNJ1/2, INPP5F, and
570 Molecular Cell 68, 566–580, November 2, 2017
INPP5B caused significant elevations in PI(3,4,5)P3 and a

modest reduction in PI(3,4)P2 (Figure S4E).

It therefore remained possible that most of the PI(3,4)P2 pro-

duced on EGF stimulation may be derived directly by class I

PI3K-mediated 3-phosphorylation of PI4P, rather than indirectly

via 5-dephosphorylation of PI(3,4,5)P3. To estimate the flux

through PI(3,4,5)P3 dephosphorylation, we added 1 mM PI-103

1 min after adding EGF, to prevent further activity of class I

PI3K, and then we monitored the fall in PI(3,4,5)P3 levels (Fig-

ure 4B). PI(3,4,5)P3 levels dropped so quickly in WT cells that it

was difficult to model the kinetics and derive an accurate rate

of dephosphorylation, but the half-life was <5 s (Figure 4B, upper

left panel). Loss of PTEN, knockdown of SHIP2, and combined

loss of PTEN and knockdown of SHIP2 slowed the fractional

rate of PI(3,4,5)P3 removal, but the higher starting levels of

PI(3,4,5)P3 maintained a high rate of PI(3,4,5)P3 dephosphoryla-

tion (Figure 4B, upper right panel).

We built mathematical models to test our hypotheses on

PI(3,4,5)P3 and PI(3,4)P2 dephosphorylations (Figures 4C–4E;

STAR Methods; Data S1 and S2). The minimal model able to

explain all of our observations includes the activation of EGFRs



(legend on next page)
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and the subsequent stimulation of class I PI3K activity, as well

as the formation and consumption of PI(3,4,5)P3, PI(3,4)P2,

PI(4,5)P2, PI3P, and PI4P (Figure 4C). We parameterized the

model using all the time course measurements in WT, knock-

down and knockout backgrounds, with and without PI3K

inhibition (presence or absence of PI-103), using the genetic

algorithm in COPASI software (Dalle Pezze and Le Novère,

2017; Mendes et al., 2009). Parameterization of alternative

models with different kinetic expressions demonstrated that

the best fit to the experimental data was obtained if the assump-

tion is made that the phosphatases involved in class I PI3K-acti-

vated phosphoinositide signaling pathways operate in their

linear range, i.e., they are not saturated with their lipid substrate

(STAR Methods; Data S1 and S2). Simulations created by the

operation of this model are depicted by continuous lines in

Figure 4B.

The predicted ratio of flux through 5-phosphatase and

3-phosphatase attack on PI(3,4,5)P3 is 1.4:1, suggesting a

substantial fraction of PI(3,4,5)P3 is recycled back to PI(4,5)P2

upon class I PI3K activation (Figure 4D). When PTEN is geneti-

cally deleted, this recycling is not possible and PI(3,4)P2 is

produced at a higher rate, as a result of more PI(3,4,5)P3 being

available to 5-phosphatases (Figure 4D). EGF-stimulated accu-

mulation of PI(3,4)P2 in all mutant cells could be simulated if

SHIP2 plus other 5-phosphatases (X) support PI(3,4)P2 produc-

tion with a relative flux of�2.65:1 (Figure 4D). The observed level

cannot be simulated if SHIP2 is the only 5-phosphatase process-

ing PI(3,4,5)P3.

This model predicts that both PTEN and INPP4B directly

regulate PI(3,4)P2 dephosphorylation, together with a further

unknown phosphatase (Y). Simulations show that PTEN must

act directly on PI(3,4)P2 and not merely increase the levels of

PI(3,4,5)P3 and thence flux through its 5-dephosphorylation. In

INPP4A/B-KD cells, all PI(3,4)P2 dephosphorylation flux is

routed through PTEN and the unknown phosphatase Y, with a

relative flux of approximately 16:1 (Figure 4E). The model pre-

dicts that Y must provide about 6% of the total PI(3,4)P2-phos-

phatase activity, based on the continued dephosphorylation of

PI(3,4)P2 in INPP4A/B-KD,PTEN-SHIP2-KO cells in the pres-
Figure 4. Evidence for Class I PI3K-Driven Accumulation of PI(3,4)P2 in

(A) Measurements by HPLC-MS of PI(3,4,5)P3 (left panel) or PI(3,4)P2 (right pane

20 min with the indicated dilutions of a mixture of PIK75 and TGX115 (13 repre

(10 ng/mL) for 0, 1, or 5 min. Data are means ± SD of 3 technical replicates. The ta

in vitro.

(B) Time courses of PI(3,4,5)P3 (top) and PI(3,4)P2 (bottom) accumulation during E

KO, and INPP4A/B-KD,PTEN-KO cells. Cells were starved and stimulated with EG

either vehicle (DMSO; solid circles) or PI-103 (1 mM; crosses), and incubations

biological replicates. Lines represent simulations of our mathematical model (see

INPP4A/B-KD,PTEN-KO cells exhibit a large increase in PI(3,4)P2.

(C) List of biochemical reactions represented in themathematical model, represen

Novère et al., 2009).

(D) Simulated maximal fluxes of dephosphorylation of PI(3,4,5)P3 into PI(4,5)P2 by

5-phosphatases). In PTEN-KO cells, all PI(3,4,5)P3 is converted into PI(3,4)P2, S

X compensates partially for the lack of SHIP2, a larger share of the fluxes is re-rou

X cannot fully compensate for the lack of both enzymes.

(E) Simulated maximal fluxes of dephosphorylation of PI(3,4)P2 by INPP4B, PTEN

the WT, the fluxes through INPP4B and PTEN are balanced. The fluxes are re-ro

reproduce the experimental results, its activity remains very limited.

Supporting information is presented in Figures S4 and S5, the STAR Methods, a
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ence of PI-103 (Figure 4B, lower right panel). Candidates for

the unknown phosphatase Y are the PTEN homologs TPTE or

TPIP (Walker et al., 2001), however, there is no evidence to

date that these proteins are expressed in Mcf10a cells (Wang

et al., 2011).

Themodel is not able to simulate the basal levels of PI(3,4)P2 in

starved, unstimulated cells without invoking a separate pool of

PI(3,4)P2 that is both insensitive to EGF and is not synthesized

by class I PI3K (PI(3,4)P2_BG; STAR Methods; Data S1 and

S2). We interrogated the nature of this EGF-insensitive pool by

alternative MS analyses and [33P]-Pi-radiolabelling (Figure S5).

The results were inconclusive and it remains plausible that this

pool is significantly contaminated with non-PI(3,4)P2-derived

molecules, leading to an overestimation of the class I PI3K-

insensitive pool predicted by themodeling (see the legend to Fig-

ure S5 for more detailed arguments).

PTEN Directly Dephosphorylates PI(3,4)P2 in Mcf10a
Cytosol
A clear prediction of our mathematical model is that PTEN

acts as a direct PI(3,4)P2 phosphatase and provides around

57% of the total PI(3,4)P2-phosphatase activity. PTEN has

previously been shown to be a poor PI(3,4)P2 phosphatase in as-

says with recombinant protein and simplified lipid substrates

(McConnachie et al., 2003). We re-examined the potential for

PTEN to act as a PI(3,4)P2 phosphatase by constructing assays

that were a better mimic of the physiological environment; this

involved combining Mcf10a cytosol with a complex lipid sub-

strate that contained phospholipids, cholesterol, sphingomyelin,

and isotope-enriched d6-PI(3,4,5)P3 or d6-PI(3,4)P2 substrates

(to avoid any ambiguity as to the origin of products derived

from these substrates).

Under assay conditions resulting in less than 10% consump-

tion of substrate, cytosol from WT cells dephosphorylated d6-

PI(3,4,5)P3 at both 3- and 5- positions, producing d6-PI(4,5)P2

and d6-PI(3,4)P2, respectively (Figures 5A and 5B). Cytosol

from PTEN-KO cells produced no significant d6-PI(4,5)P2,

indicating PTEN is the only PI(3,4,5)P3 3-phosphatase active

under these conditions. Cytosol from cells lacking SHIP2
EGF-Stimulated Mcf10a Cells

l) in INPP4BA/B-KD,PTEN-KO Mcf10a cells that were starved; pretreated for

sents 0.0058 mM PIK75 and 0.13 mM TGX115); and then stimulated with EGF

ble shows IC50s of PIK75 and TGX115 against relevant PI3K activities assayed

GF stimulation of WT, PTEN-KO, SHIP2-KD, INPP4A/B-KD, SHIP2-KD,PTEN-

F (10 ng/mL) at time 0. At 60 s post-EGF stimulation, samples were treated with

continued for the times indicated. Data are represented as means ± SD of 3

below) in the absence (continuous) or presence (dashed lines) of PI-103. Only

ted using SystemsBiology Graphical Notation (SBGN) process descriptions (Le

PTEN and into PI(3,4)P2 by SHIP2 and X (the combination of all other relevant

HIP2 and X compensating for the absence of PTEN. In SHIP2-KD cells, while

ted toward PI(4,5)P2. When both PTEN and SHIP2 are absent, the flux through

, and an unknown phosphatase Y in WT, INPP4A/B-KD, and PTEN-KO cells. In

uted in the mutants. While an unknown phosphatase is required to accurately

nd Data S1 and S2.



Figure 5. Dephosphorylation of PI(3,4,5)P3

and PI(3,4)P2 by Mcf10a Cytosol

(A) Measurement of 3-phosphatase activity

against d6-PI(3,4,5)P3 present in cytosol prepared

from the indicated Mcf10a cell genotypes. Data

are means ± SD of 3 technical replicates.

(B) Measurement of 5-phosphatase activity

against d6-PI(3,4,5)P3 present in cytosol prepared

from the indicated Mcf10a cell genotypes. Data

are means ± SD of 3 technical replicates.

(C) Measurement of d6-PI(3,4)P2-phosphatase

activity present in cytosol prepared from the indi-

cated Mcf10a cell genotypes. Data are means ±

SD of 3 technical replicates.

Methods: Mcf10a cytosol was prepared and

incubated with liposomes containing the indicated

d6-labeled phosphoinositide at 30�C, for the times

indicated, and then lipids were extracted and

measured by HPLC-MS, as described in the STAR

Methods.

Supporting information is presented in Figure S6.
produced similar amounts of d6-PI(3,4)P2 to cytosol derived

from cells containing SHIP2, consistent with the conclusion

above that Mcf10a cells contain multiple PI(3,4,5)P3 5-phospha-

tase activities.

Cytosol from cells lacking INPP4B was able to dephosphory-

late d6-PI(3,4)P2, generating d6-PIP, at a very similar rate to

cytosol fromWT cells (Figure 5C). Remarkably, however, cytosol

from cells lacking PTEN produced no measurable d6-PIP in

these assays (Figure 5C). The dephosphorylation of d6-

PI(3,4)P2 by PTEN-KO cytosol could be rescued by the addition

of catalytically active, but not catalytically dead, recombinant

PTEN (Figure S6B), demonstrating that PTEN can act as a

direct PI(3,4)P2 phosphatase under these conditions. Further,

we were able to modify our HPLC-MS method to distinguish

between PI3P and PI4P (see the STAR Methods), and this was

sufficient to identify the d6-PIP resulting from PTEN-dependent
Molecula
dephosphorylation of d6-PI(3,4)P2 as

PI4P and, hence, define PTEN as a

PI(3,4)P2 3-phosphatase (Figure S6A).

PI(3,4)P2 Accumulation in
EGF-Stimulated Mcf10a Cells
Correlates with the Activation of
AKT and Increased Numbers of
Invadopodia
Previous work has shown deletion of

PTEN or INPP4B results in hyperactiva-

tion of AKT (Gewinner et al., 2009). We

compared the EGF-stimulated phosphor-

ylation of T308-AKT and S473-AKT in WT

and genetically modified Mcf10a cells

(Figures 6A and 6B). The knockdown

of INPP4A/B or deletion of PTEN

augmented the activation of AKT, and

this was further increased by combined

knockdown and deletion of these two en-

zymes (Figures 6A and 6B). The phos-
phorylation of AKT did not correlate closely with levels of

PI(3,4)P2, but this might be predicted from our lack of under-

standing of the relative efficiency with which PI(3,4,5)P3 and

PI(3,4)P2 activate AKT.

PI(3,4)P2 also has a separate, specific role in mediating Tks5-

dependent formation of actin-rich structures called invadopodia

(Seals et al., 2005; Sharma et al., 2013; Yamaguchi et al., 2011).

These structures are involved in matrix degradation and have

been implicated in metastasis (Leong et al., 2014; Seals et al.,

2005). We measured the formation of invadopodia in transform-

ing growth factor b (TGF-b)-primed Mcf10a cells grown on

fluorescent-gelatin by correlating holes in the gelatin with focal

accumulations of cortactin. We found that EGF stimulated a sig-

nificant increase in the numbers of invadopodia and that this

response was significantly augmented in cells lacking both

PTEN and INPP4B (Figures 6C and 6D).
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Figure 6. The Impact of Deleting PTEN and

INPP4B on Activation of AKT and the For-

mation of Invadopodia in Mcf10a Cells

(A and B) Phosphorylation of Thr-308-AKT (A) and

Ser-473-AKT (B) in WT or PTEN-KO Mcf10a cells

treated with either Ctrl or INPP4A/B siRNA and

then starved and stimulated for the indicated times

with EGF (0.3 ng/mL). AKT phosphorylation was

measured in cell lysates after SDS-PAGE, western

blotting with the relevant antibody, and then

normalization against an actin loading control (see

the STAR Methods). Data are means ± SD of

3 technical replicates.

(C) An example of images taken of WT Mcf10a

cells grown for 6 days in the presence of hTGF-b1

(10 ng/mL), plated on fluorescent gelatin for 2 hr,

starved (4 hr), and then stimulated with EGF

(20 ng/mL; 6 hr), before fixing and staining with an

anti-cortactin antibody (see the STAR Methods).

Invadopodia were identified by the co-localization

of holes in the gelatin (green) with accumulations

of cortactin (red; see arrows). Orthogonal projec-

tion of z stacked images shows cross-section

through the gelatin surface (typically 1.5–2 mm)

and invadopodia labeled with antibody against

cortactin.The scale bar represents 24 mm.

(D) Quantification of invadopodia formed in

Mcf10a cells of the indicated genotype. The data

represent means ± SD of 3 biological replicates.

Statistical analysis was done using Tukey’s mul-

tiple comparisons test (with p values of *p < 0.05,

**p < 0.01, ***p < 0.001, and ****p < 0.0001). The

effect of EGF treatment was significant in all

compared genotypes.
PTEN Regulates PI(3,4)P2 Accumulation in a Mouse
Model of Prostate Cancer
The above studies clearly identify PTEN as a major PI(3,4)P2

phosphatase in vitro. To extend these observations to an in vivo

context in which PTEN has been shown to play an important role,

we investigated the prostate epithelial cell-specific deletion of

PTEN in a mouse model of prostate cancer (Trotman et al.,

2003). In the PB-Cre43 PTEN model, expression of Cre-recom-

binase occurs from the onset of prostate development in

newborn mice, and deletion of PTEN leads to hyperplasic

growth, followed by prostate intraepithelial neoplasia (PIN)

from 5 weeks and adenocarcinoma from 6 months (C. Sandi,

personal communication).

We measured PI(3,4)P2 and PI(3,4,5)P3 accumulation by

HPLC-MS in prostate biopsies taken from Ptenflox/flox,PbCre�/�

(WT) or Ptenflox/flox,PbCre+/� (PTEN-KO) mice at 10 weeks of

age (Figures 7A and 7B). We also visualized PI(3,4)P2 accumula-
574 Molecular Cell 68, 566–580, November 2, 2017
tion by immunofluorescence in prostate

sections taken from WT or PTEN-KO

mice at 12 weeks of age (Figure 7C) and

sections from WT; PTEN-KO; Ptenflox/flox,

PbCre�/�,Inpp4b�/� (INPP4B-KO; Kofuji

et al., 2015); or Ptenflox/flox,PbCre+/�,
Inpp4b�/� (PTEN-INPP4B-KO) mice at

16 weeks of age (Figures 7D and 7E).
Loss of PTEN alone caused a dramatic accumulation of

PI(3,4)P2, which amounted to �50% of the levels of PI(4,5)P2 in

whole-prostate biopsies (Figures 7A and 7B; luminal epithelial

cells represent�70%of the total cells in these samples). Further,

immunohistochemistry (IHC) analysis indicated preferential

accumulation of PI(3,4)P2 in the growing tips of hyperplasic acini

in sections taken from PTEN-KO and PTEN-INPP4B-KO pros-

tates at 16 weeks (Figure 7E). PI(3,4)P2 accumulation also

correlated closely with areas stained by an anti-phospho-

S473-AKT antibody (Figure S7A). In PTEN-KO and PTEN-

INPP4B-KO prostates at 16 weeks of age, PI(3,4)P2 accumula-

tion was also particularly evident in acini with surrounding sites

of reactive stroma and where the smooth muscle cell layer had

lost its integrity (Figure S7B). Hence, PI(3,4)P2 accumulation

correlated with both the earliest stages of tumor progression

and later stages that constitute the first steps toward

microinvasion.



(legend on next page)
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We found no evidence for PI(3,4)P2 accumulation aboveWT in

INPP4B-KO prostates and similar levels of PI(3,4)P2 in PTEN-KO

versus INPP4B-PTEN-KO prostates (Figures 7D and S7B). The

remarkable accumulation of PI(3,4)P2 in mouse prostate in

response to the loss of PTEN alone and the reduced contribution

from INPP4B in regulating PI(3,4)P2 levels suggested there may

be lower expression of INPP4B in mouse prostate compared to

Mcf10a cells. We therefore compared the relative expression

levels of PTEN and INPP4B in several mouse tissues and

Mcf10a cells by western blotting. PTEN expression was similar

across all samples analyzed, but expression of INPP4B was

very variable, with high expression in mouse brain (Ferron and

Vacher, 2006) and Mcf10a cells but undetectable expression in

WT or PTEN-KOmouse prostate (Figure 7F). The low expression

of INPP4B in mouse prostate was also confirmed by RNA

sequencing (RNA-seq) (C. Sandi, personal communication),

and it is consistent with similar rates of prostate cancer develop-

ment in PTEN single-KO and PTEN-INPP4B double-KO mice

(data not shown).

PTEN Regulates PI(3,4)P2 Accumulation in Human
Cancer Cell Lines
Wemeasured PI(3,4)P2 and PI(3,4,5)P3 in a range of human pros-

tate and breast cancer cells and also relative expression of

INPP4B and PTEN (Figures S7C–S7F). Loss of PTEN generally

correlated with increased basal and EGF-stimulated PI(3,4,5)P3

responses and increased EGF-stimulated accumulation of

PI(3,4)P2. Two exceptions were T-47D and HCC-1187, which

had normal expression of PTEN but large PI(3,4,5)P3 responses.

T-47D has previously been shown to possess an H1047 gain-of-

function mutation and increased copy number of PI3KCA (Wu

et al., 2005). HCC-1187 has been shown to have unusually

high levels of phosphorylated EGFR and platelet-derived growth

factor receptor (PDGFR) (Cuenca-López et al., 2014). The cell

line with standout, selective accumulation of PI(3,4)P2 in

response to EGF was MDA-MB-436, which lacks expression of

both PTEN and INPP4B, though this was not so obvious in the

two other cell lines lacking both phosphatases (BT-549 and

EVSA-T). Clearly, there will be many factors at play in deter-

mining the flux through 5-dephosphorylation of PI(3,4,5)P3,

including levels of active receptor, and thus a comparison be-
Figure 7. The Impact of Deleting PTEN and INPP4B in Mouse Prostate

(A) Measurement by HPLC-MS of the indicated phosphoinositides in prostate b

means ± SD of three individual mice for each group.

(B) Representative HPLC-MS chromatograms showing levels of PIP2 in prostate

(C) An example of Hoechst and anti-PI(3,4)P2-stained sections of prostates taken

acini and yellow arrows indicate regions in the prostate where acini exhibit H

represent 0.2 mm.

(D and E) H&E, Hoechst, and anti-PI(3,4)P2-stained sections of prostates taken fro

(D; scale bar represents 1mm). Some areas of PTEN-KO and PTEN-INPP4B-KO s

levels of anti-PI(3,4)P2 staining are represented on the pseudo-color scale shown;

shown are typical of 3 prostate sections analyzed from 3 mice in each genotyp

automatically filled in using Adobe Photoshop; seminal vesicles (SV), anterior (A),

arrows.

(F) A representative western blot is shown describing the relative expression of IN

loaded per lane) and humanMcf10a cell clones (15 mg total protein loaded per lane

prostates, Cre expression and hence PTEN deletion are restricted to prostate ep

Supporting information is presented in Figure S7.
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tween a relatively small number of cancer cells, with multiple dif-

ferences in mutational status and gene expression, is difficult.

Nevertheless, these results broadly support the idea that PTEN

is likely to be a widespread regulator of PI(3,4)P2 levels but that

this role may be more apparent in cells with reduced expression

of INPP4B.

Interestingly, prostate lines lacking PTEN exhibited relatively

reduced responses to IGF-1 (Figure S7E). We suspect this is

due to selective downregulation of the insulin/IGF-1/IRS-1-

signaling pathway by PI3K/mTORC1-mediated feedback inhibi-

tion (T.C., unpublished data). However, the relative efficacy of

different agonists to stimulate PI(3,4)P2 accumulation is some-

thing that clearly requires further investigation.

DISCUSSION

We systematically screened for phosphoinositide phosphatases

in Mcf10a cells that can selectively shape the PI(3,4,5)P3 and

PI(3,4)P2 signals produced in response to EGF. While our results

confirm the importance of PTEN and SHIP2 as phosphatases

that regulate the accumulation of PI(3,4,5)P3, they also point to

a complex picture in these cells that is most easily explained

by significant compensation among multiple phosphatases for

the loss of any one individual enzyme. The extent to which these

compensatory mechanisms reflect shared roles under normal

conditions, are simply driven by the mass action effect of a rise

in PI(3,4,5)P3, or depend on additional activation mechanisms

is unclear. Significant redundancy among 5-phosphatases may

also explain the lack of prevalent tumor suppressors among

this family, though the recent identification of PIPP (INPP5J) as

a potential tumor suppressor in breast cancer points to contexts

in which individual enzymes may predominate (Ooms et al.,

2015). We also cannot rule out that significant PI(3,4)P2 is pro-

duced by direct class I PI3K-catalyzed phosphorylation of

PI4P, though previous studies showing analogous PI(3,4)P2 pro-

duction lags behind that of PI(3,4,5)P3 (Hawkins et al., 1992) and

our own observations that the rate of PI(3,4,5)P3 degradation is

sufficient to account for the rate of PI(3,4)P2 accumulation sug-

gest it is not necessary to invoke this explanation.

We clearly demonstrate that PTEN is an active PI(3,4)P2

3-phosphatase in Mcf10a cytosol. This is surprising given that
iopsies taken from WT or PTEN-KO mice at 10 weeks of age. Data represent

biopsies taken from WT or PTEN-KO mice at 10 weeks of age.

fromWT and PTEN-KOmice at 12 weeks of age. White arrows indicate normal

G-PIN. Images are confocal sections of a 12-mm specimen and scale bars

m WT, PTEN-KO, INPP4B-KO, or PTEN-INPP4B-KO mice at 16 weeks of age

ections are shown at highermagnification (E; scale bar represents 0.2mm), and

examples of the tips of growing acini are indicated bywhite arrows. The images

e. H&E images were stitched together using AxioVision 4 software and gaps

dorsolateral (DLP), and ventral (V) lobes of the prostate are indicated by black

PP4B and PTEN in the indicated mouse tissues (estimated 20 mg total protein

). This experiment was repeated 3 times with similar results. Note: in PTEN-KO

ithelial cells, which represent only �70% of total cellular content.



careful in vitro studies have previously suggested that PI(3,4)P2

is a very poor substrate for PTEN, at least compared to

PI(3,4,5)P3 (McConnachie et al., 2003). Further, PTEN was actu-

ally a much more effective PI(3,4)P2 phosphatase in our assays

than INPP4B, an established 4-phosphatase that is considered

to catalyze the major route of PI(3,4)P2 dephosphorylation, to

form PI3P (Fedele et al., 2010; Gewinner et al., 2009). Phosphoi-

nositide-metabolizing enzymes are notoriously susceptible to

in vitro assay conditions, particularly with respect to substrate

presentation (Irvine et al., 1984), and we think it is probable

that the use of cytosol and a complex lipid interface in our assays

(which included PI(4,5)P2, an established co-factor for PTEN;

Redfern et al., 2008) favored the detection of PTEN’s PI(3,4)P2-

phosphatase activity compared to analogous previous studies.

In intact Mcf10a cells, deletion of PTEN alone had a very small

impact on EGF-stimulated accumulation of PI(3,4)P2, and dele-

tion of INPP4B alone had no discernible effect. However, com-

bined deletion of PTEN and INPP4B had a very large, synergistic

effect on EGF-stimulated PI(3,4)P2 accumulation, suggesting

that in the cellular environment these two enzymes can each

compensate effectively for the other’s absence with respect to

PI(3,4)P2 hydrolysis.

Our results indicate that the degree to which PI(3,4)P2 pro-

duced by class I PI3K at the plasma membrane can be dephos-

phorylated by PTEN to form PI4P has been underestimated. This

conclusion is supported by studies showing overexpressed

PTEN can influence PI(3,4)P2-reporter distributions in lympho-

cytes (Cheung et al., 2007), and it is also consistent with the rela-

tively small accumulations of PI3P seen in most examples of

class I PI3K activation (Hawkins et al., 1992; Stephens et al.,

1991). It is also consistent with original observations that cell

lysates can actively dephosphorylate PI(3,4)P2 at the 3- position

(Stephens et al., 1991). It is important to note, however, that

PI(3,4)P2 produced via different routes (e.g., class II PI3Ks) or

in different locations (e.g., endosomes or clathrin-coated pits)

is likely to be controlled by different phosphatases, and, at least

in some of these contexts, the dephosphorylation of PI(3,4)P2 by

INPP4A/B to form PI3P is likely to predominate (Posor et al.,

2015; Sasaki et al., 2010).

In mouse prostate, deleting PTEN alone had a profound effect

on PI(3,4)P2 levels; in 10-week-old prostates the levels of

PI(3,4)P2 rose from undetectable to approximately 50% of

PI(4,5)P2. Deletion of INPP4B alone had an insignificant effect

on PI(3,4)P2 accumulation, and combined deletion of INPP4B

and PTEN had an insignificant impact above deletion of PTEN

alone. Previous work has shown that deletion of PTEN in mouse

prostate drives class I PI3K-dependent epithelial cell hyperplasia

and tumor growth with 100% penetrance (Jia et al., 2008; Trot-

man et al., 2003), and, thus, our results represent a stunning

example of how deletion of PTEN in vivo can result in massive

PI(3,4)P2 accumulation in the context of class I PI3K pathway

activation.

The lesser impact of deleting INPP4B in mouse prostate

versus Mcf10a cells reflects the relative abundance of this pro-

tein in these two tissues, and it suggests that different cells

and tissues may vary with respect to the relative involvement

of PTEN and INPP4B in regulating PI(3,4)P2, a conclusion sup-

ported by our analysis of a limited collection of breast and pros-
tate cancer cell lines. Direct evidence has been presented for a

context-dependent role for INPP4B as a tumor suppressor,

with deletion of Inpp4b driving tumor formation in mouse thyroid

only in the absence of one allele of Pten (Vo and Fruman, 2015).

A simple analysis of cancer genomic data using cBioPortal (Ce-

rami et al., 2012) suggests INPP4B is not frequently mutated in

human cancer and there is no striking correlation betweenmuta-

tion in PTEN and INPP4B. However, significant co-reductions in

INPP4B and PTEN expression have been noted in human breast,

ovarian, and thyroid cancers (Fedele et al., 2010; Gewinner et al.,

2009; Kofuji et al., 2015; Vo and Fruman, 2015). Further, in hu-

man prostate, INPP4B expression is regulated by androgen re-

ceptor signaling, and loss of both PTEN and INPP4B proteins

is highly prevalent in castration-resistant, late-stage cancers

(Rynkiewicz et al., 2015; Hodgson et al., 2011). Our results

describing PTEN and INPP4B as PI(3,4)P2 3- and 4-phospha-

tases, respectively, would provide a natural explanation for the

impact of their combined loss in driving tumor progression.

The magnitude of EGF-stimulated PI(3,4)P2 accumulation in

PTEN-INPP4B-KO cells suggests the flux through 5-dephos-

phorylation of PI(3,4,5)P3 is surprisingly large and that the

steady-state levels of PI(3,4,5)P3 are dynamically regulated by

very fast rates of synthesis and degradation. Whether 5-dephos-

phorylation brings a quantitative or qualitative element to the

class I PI3K-signaling network has been debated, with strong

evidence now presented for both roles (Erneux et al., 2011; Haw-

kins and Stephens, 2016; Li and Marshall, 2015). The loss of

INPP4B has been argued to drive increased activation of AKT

through increased accumulation of PI(3,4)P2 (Fedele et al.,

2010; Gewinner et al., 2009), and several PI(3,4)P2-selective

signaling roles have also been described, for example, involving

the putative PI(3,4)P2 effectors TAPP1/2 (Dowler et al., 2000),

TKS5 (Abram et al., 2003), SNX9 (Posor et al., 2013), and

lamellipodin (Krause et al., 2004) in the regulation of receptor

desensitization, invadopodia, endocytosis, and lamellipodia,

respectively (Hawkins and Stephens, 2016; Li and Marshall,

2015). We present evidence that combined deletion of PTEN

and INPP4B in Mcf10a cells significantly potentiates EGF-stimu-

lated phosphorylation of AKT and also the formation of invado-

podia, confirming that PI(3,4)P2 synthesized in this context can

signal through these routes. In contrast, however, a reduction

in INPP4B expression in PTEN-null breast cancer lines has

recently been argued to drive PI(3,4)P2-dependent negative

feedback, reducing activation of AKT and sensitizing cell growth

to PI3Kb inhibitors, an effect suggested to result from direct

PI(3,4)P2-mediated inhibition of class I PI3Ks (Reed and Shokat,

2017). Clearly, in these cells, the impact of reducing INPP4B

expression on AKT phosphorylation was the opposite to that

shown here for Mcf10a cells, an untransformed breast epithelial

cell line (Figures 6A and 6B). Thus, the qualitative response of a

given cell to a rise in PI(3,4)P2 may depend exquisitely on the

magnitude of this rise and the poise of the signaling pathway

to respond to it.

Our results reveal an important and widespread role for PTEN

as a PI(3,4)P2 3-phosphatase. We think it is likely that this

property of PTEN has been overlooked because of technical dif-

ficulties in measuring PI(3,4)P2 in cellular extracts and the prop-

erties of recombinant PTEN in the in vitro assays constructed to
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date. In the context of class I PI3K activation, loss of PTEN raises

the levels of PI(3,4,5)P3, increases flux through PI(3,4,5)P3

5-phosphatases, and slows dephosphorylation of the resulting

PI(3,4)P2. In some tissues, loss of PTEN alone is sufficient to

drive huge accumulations of PI(3,4)P2 (e.g., mouse prostate). In

other cells, combined loss of both PTEN and INPP4B is required

to see equivalent increases in PI(3,4)P2 (e.g., Mcf10a cells).

These very large accumulations of PI(3,4)P2 will distort class I

PI3K pathway signaling, through both a quantitative effect on

the activation of common PI(3,4)P2 and PI(3,4,5)P3 effectors

(e.g., AKT) and a signaling imbalance through the activation of

PI(3,4)P2-selective effectors (e.g., Tks5). The effects of this

distortion will be context dependent, but, for PTEN-dependent

tumorigenesis and metastasis, the contribution of PI(3,4)P2-spe-

cific processes is clearly an area that now demands further

investigation. The potential role of PTEN as a PI(3,4)P2 phospha-

tase under normal physiological conditions, within both class I

and class II PI3K-signaling pathways, is also a concept that

now warrants further attention.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
PB-Cre4 mice (Wu et al., 2001) and PTENloxP/loxP mice (Trotman et al., 2003) have been described previously. PbCre4 mice and

PTENloxP/loxP mice were interbred to generate ‘WT’ (PTENloxP/loxP, PbCre�/�) and ‘PTEN-KO’ (PTENloxP/loxP, PbCre+/�) mice and

backcrossed to the C57BL/6J strain for at least 4 generations; these mice were housed in the Biological Support Unit at The Babra-

ham Institute. INPP4B�/� mice have been described previously (Kofuji et al., 2015) and were interbred with PTEN-KO mice to

generate ‘PTEN-INPP4B-KO’ (PTENloxP/loxP, PbCre+/�, INPP4B�/�) mice; these mice were housed in the Akita University Ani-

mal House.

Sample Size Estimation

No estimation of simple size was performed as sample sizes were not chosen based on pre-specified effect size. Instead, multiple

independent experiments were carried out using several biological replicates specified in the legends to figures.

How Subjects/Samples Were Allocated to Experimental Groups

Prostates from several age-matched mice of identical genotype were analyzed.

Gender of Subjects or Animals

Male mice were used.

Health/Immune Status

The animals were kept under SPF conditions and the animal facilities where the mice were kept were regularly checked for standard

pathogens. Health reports can be provided upon request.

Whether Subjects Were Involved in Previous Procedures

Prostates were prepared from mice not subject to any previous experimentation.

Whether the Subject Is Drug or Test Naive

Mice used for all experiments were naive. No drug tests were done.

Husbandry Conditions of Experimental Animals

All animal experiments at The Babraham Insitute were reviewed and approved by The Animal Welfare and Ethics Review Body and

performed under Home Office Project license PPL 70/8100. Animal experiments in Akita were reviewed and approved by the Akita

University Institutional Committee for Animal Studies, Akita University. The mice were looked after by professional caretakers. Every

animal was checked daily.

Housing Conditions of Experimental Animals

Animals housed in the Biological Support Unit at the Babraham Institute were kept under specific pathogen–free conditions. Mice in

the animal facility in Akita were kept in groups of up to six animals in standard IVC cages of 524 cm2 containing bedding and nesting

material. Food and water was provided ad libitum. The light cycle ran from 6 am to 6 pm.

Cell Lines
Mcf10a cells are non-transformed human female breast epithelial cells. PTEN�/� Mcf10a cell lines were generated by targeted ho-

mologous recombination and were obtained from Horizon Discovery Ltd together with their parental cell lines. All Mcf10a cell lines
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were maintained at 37�C with 5% CO2 in DMEM/F12 supplemented with 5% horse serum, 10 ng/mL EGF, 10 mg/mL insulin,

0.1 mg/mL cholera toxin, 0.5 mg/mL hydrocortisone, 1% w/v penicillin/streptomycin (complete medium). Starvation medium con-

sisted of DMEM/F12 supplemented with 1% charcoal/dextran treated fetal bovine serum, 0.1 mg/mL cholera toxin, 0.5 mg/mL hydro-

cortisone, 1% P/S.

Human prostate cancer cells (DU-145, BPH-1, LNCaP, LNCaP 95 and PC-3) and breast cancer cells (T-47D, EVSA-T, CAL-120,

BT-549, MDA-MB-436, HCC70, HCC-1187, HCC-1937, MDA-MB-157) were obtained from the AstraZeneca cell bank and had been

previously authenticated using DNA fingerprinting short tandem repeat assays. All revived cells were used within 10 passages and

cultured at 37�C with 5% CO2 for less than 2 months. Benign prostatic hyperplasia epithelial cell line BPH-1 was cultured in RPMI-

1640 supplemented with 20% FBS, 10 mg/mL insulin, 6.7 ng/mL sodium selenite, 5.5 mg/mL transferrin, 0.5 nM dihydrotestosterone

and 1%w/v penicillin/streptomycin. The remaining prostate and breast cancer cell lines were grown in RPMI-1640with 10%FBS and

1% w/v penicillin/streptomycin.

Human Tissue (Platelets)
Venous blood was obtained from a healthy female human volunteer with the approval of the local research ethics committee at the

University of Bristol, UK. The donor provided written informed consent, and reported as not having taken medication in the 14 days

prior to donation. Blood was drawn into 4% trisodium citrate (1:9, v/v), and acidified with acidic citrate dextrose (1:7, v/v; 120 mM

sodium citrate, 110 mM glucose, 80 mM citric acid). Platelet-rich plasma (PRP) was obtained by centrifugation of the blood at

180xg for 17 min at room temperature. Platelets were subsequently pelleted by centrifugation of the PRP at 650 x g for 10 min

at room temperature in the presence of 10 mM indomethacin and 0.02 U/mL apyrase (grade VII). Platelets were resuspended at

43 108/mL in HEPES–Tyrode buffer (145 mM NaCl, 3 mM KCl, 0.5 mM Na2HPO4, 1 mMMgS04.7H2O, 10 mM HEPES, pH 7.2) sup-

plemented with 0.1% [w/v] D-glucose, 10 mM indomethacin and 0.02 U/mL apyrase, and allowed to rest at 30�C for 30 min prior to

experimentation.

METHOD DETAILS

Preparation of Platelets for PI(3,4)P2 Measurement
1 3 108 platelets were preincubated with DMSO or 100 nM Wortmannin for 10 min, before treatment with HEPES–Tyrode buffer or

0.5 U/mL thrombin for 3min under stirring at 1200 r.p.m using a Chronolog 490-4D aggregometer at 37�C (Labmedics, Abingdon-on-

Thames, UK). Treatment was stopped by the addition of 750 ml ice-cold 1MHCl and sampleswere centrifuged at 12000 x g for 10min

at 4�C. Resulting pellets were frozen until lipid extraction.

siRNA Suppression
1.63 105 cells were seeded per 35mmdish, and were subject to reverse transfection (using transfection agent DharamaFECT1) with

a pool of 4 different siRNA (40 nM per target; ON-Target-plus pooled siRNA.) in Optimem and 10% complete medium, according to

manufacturer’s instructions. Media was changed after 16 hr and replaced with complete medium for 32 hr, after which cells were

washed with dPBS and maintained in starvation media for 16 hr. Cells were stimulated with 10 ng/mL of EGF for the indicated times.

Where indicated, cells were pre-incubated with inhibitors for 20 min prior to EGF stimulation. Stimulations were terminated by aspi-

ration of media and washing with ice-cold PBS, prior to processing of the cells for lipid or western blot analysis as described below.

Gene Editing of Mcf10a Cell Lines Using CRISPR/Cas9
sgRNAs were designed using https://chopchop.rc.fas.harvard.edu/ or http://crispr.mit.edu/ and cloned into all-in-one

pSpCas9(BB)-2A-GFP plasmid, plasmid as described previously (Ran et al., 2013). To generate an INPP4B knockout, sgRNA

50- GATCTCCGTAATCCACCCCG-30 targeting exon 7 was used. SHIP2 knockout was generated using sgRNA 50-GTGCAGGCCTTT

GAGGTACA-30 directed against exon 8. Mcf10a cells were transfected with 4 mg DNA using the AMAXA nucleofection system. After

24-48 hr, GFP positive cells were FACS sorted and seeded at the density of up to 1 cell per well in a 96 well plate using a conditioned

medium (1:1 mix of fresh Mcf10a medium and conditioned medium harvested after 3 days in culture with Mcf10a cells and 0.45 mm

filtered). Single clones were picked after 7 days, expanded, and analyzed for loss of protein by western blot using anti-INPP4B and

anti-SHIP2 antibodies.

Generation of Mcf10a Cells Stably Expressing Fluorescent Reporters
The GFP-PH-GRP1 domain construct was kindly provided by Guillaume Halet (Halet et al., 2008). This construct incorporates a nu-

clear export signal resulting in the exclusion of GFP-PH-GRP1 from the nucleus, and was subcloned into PLVX-IRES-Puro Vector.

The generation of Lentivirus as well as the transduction of Mcf10A cells were performed according to the manufacturer’s guidelines.

mCherry-PH-TAPP1 expressing Mcf10a cells were generated using the isolated PH domain of TAPP1 cloned into the retroviral

vector pMIGR1, previously modified to introduce mCherry fluorescent protein cDNA upstream of the multiple cloning site

(pMIGR1-mCherry). Retrovirus was generated by transfecting 10 mg pMIGR1-mCherry-PH-TAPP into amphotropic phoenix cells

(maintained in DMEM supplemented with 10% FBS, 1% penicillin/streptomycin in 37�C humidified incubator) using lipofectamine

2000, according to the manufacturer instructions. Following 24 hr incubation, media was replaced with complete Mcf10a medium
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and incubated at 32�C for a further 24 hr. Retroviral containing media was then collected and passed through a 0.45 mm filter, before

adding to WT or PTEN�/� Mcf10a cells, as indicated, cultured in 6 well dishes. Cells were incubated at 32�C for a further 4 hr in the

presence of 4 mg/mL polybrene before transferring to 37�C. Cells were expended and washed several times in complete Mcf10a

media before a mixed population of mCherry-PH-TAPP1 expressing cells were used for image analysis as described below.

Western Blot
Mcf10a

Cells were scraped and lysed in 150 mL of ice-cold lysis buffer (20 mM Tris, pH 7.5; 150 mM NaCl; 1 mM EDTA, pH 7.5; 1 mM EGTA,

pH 7.5; 0.1% v/v Triton X-100 supplemented with anti-proteases: 10 mg/mL leupeptin, 10 mg/mL aprotinin, 10 mg/mL antipain,

10 mg/mL pepstatin A, 0.1 mM PMSF and anti-phosphatases: 2.5 mM Na4P2O7, 5 mM b- glycerophosphate, 1 mM Na3VO4,

25 mMNaF). After 30 min solubilisation at 4�Cwith agitation, lysates were centrifuged (15,000 x g, 10 min, 4�C) and the supernatants

collected and diluted in SDS-PAGE sample buffer. Proteins (45 mg/well, or 15 mg/well, where indicated) were resolved on a SDS-

PAGE gel, transferred to PVDF membranes and blotted with the indicated primary antibodies at 4�C overnight. They were then

washed in TBS (40 mM Tris/HCl, pH 8.0, 22�C; 0.14 M, NaCl) containing 0.1% v/v Tween 20 and incubated with a mix of Infrared

Dye coupled secondary antibodies. The membranes were imaged with the Li-Cor Odyssey Infrared Imaging System using the

700 nm and 800 nm channels. Signals were quantified using the Image Studio software. Alternatively, membranes were washed

and incubated with HRP-conjugated secondary antibodies and signals detected using the ECL detection system. Signals from

the HRP-incubated membranes were quantified using Aida software.

Mouse Tissues

Tissues were pulverized under a continuous flow of N2(l). 1x reducing SDS sample buffer (0.1 M DTT, 40 mM Tris-HCl pH 6.7, 12.5%

glycerol, 0.003% Bromophenol Blue) was pre-warmed to 70�C and 750 mL of sample buffer was added per 50 mg tissue to yield an

approximate final protein concentration of 4 mg/mL. Lysates were homogenized by vortexing for 15 s followed by a sequential sy-

ringe step through a 21G needle (3x), followed by a 23G needle (3x). Proteins were denatured by boiling at 95�C for 5 min. Lysates

were cleared by centrifugation for 5 min at 20,238 x g, after which the syringe and centrifugation steps were repeated. Proteins were

resolved by SDS-PAGE (20 mg estimated total protein per lane) and immunoblotted for the indicated antibodies.

Lipid Extraction
750,000 Mcf10a cells grown on a 35 mm dish were killed in 750 mL ice-cold 1 M HCL, then scraped and collected into an Eppendorf

tube. Each sample was then split into three separate 2 mL polypropylene Eppendorf tubes; 250 mL for PI, PIP, PIP2, PIP3 measure-

ment, 250 mL for PI(3,4)P2/PI(4,5)P2 measurement, and the remaining cells were kept for analysis by western blot. Cells were pelleted

in a microfuge (15,000 x g, 10 min at 4�C), the supernatant removed and cell pellets either processed immediately or snap-frozen in

liquid nitrogen and stored at �80�C for up to two weeks.

For human prostate and breast cancer cell lines, 250,000 cells were seeded into 35mmdishes and grown in themedium optimal for

each cell line for 32h. Cells were then starved for 16h by replacing themediumwith starvation medium – a phenol red-free RPMI 1640

supplemented with 2mM glutamax. Following stimulation and / or inhibition with appropriate reagents, medium was removed by

aspiration and cells killed with 750 ml ice-cold 1M HCL. Cells were then scraped, collected into Eppendorf tubes, pelleted, and

snap-frozen, as described above.

920 mL of a solvent mixture containing 2:1:0.79 (v/v) MeOH:CHCl3:H2O(acidic) was added to the cell pellets and themixture vortexed

thoroughly for 10 s. Relevant internal standards were then added:10 ng C17:0/C16:0-PIP3, 100 ng C17:0/C16:0-PI, 250 ng d6-C18:0/

C20:4-PI(4,5)P2 for routine analysis of PI, PIP, PIP2 and PIP3; 50 ng C17:0/C20:4 PI, 50 ng d6- C18:0/C20:4-PI(3,4)P2, 250 ng d6-

C18:0/C20:4-PI(4,5)P2 for routine analysis of PI, PI(3,4)P2 and PI(4,5)P2. Lipids were then extracted using an acidified Folch phase

partition and derivatised with TMS-diazomethane (Clark et al., 2011).

Molecules derived fromPI, PIP, PIP2, and PIP3 weremeasured byHPLC-MS (Kielkowska et al., 2014). Response ratios were calcu-

lated for the endogenous species of these lipids divided by their relevant C17:0/C16:0 internal standard. We routinely analyzed 5mo-

lecular species of these lipids but present here data for the C38:4 species only, to align with data presented for the C38:4 species of

PI(3,4)P2 and PI(4,5)P2 (see below). The C38:4 species of PIP2 and PIP3 represent approx. 10%–15% of the total species of these

lipids in Mcf10a cells and all species behave very similarly upon stimulation with EGF (Anderson et al., 2016). In some experiments,

absolute amounts of C38:4 PI(3,4,5)P3 were generated by reference to standard curves previously generated for this molecular spe-

cies (Kielkowska et al., 2014). Three technical replicates were routinely analyzed for each experiment and, unless stated otherwise,

data are presented as means SD of three biological replicates.

Molecules derived from PI, PI(3,4)P2 and PI(4,5)P2 were analyzed by a new HPLC-MS method, see below. Response ratios were

calculated for the endogenous C38:4 species of these lipids divided by their relevant d6-labeled internal standard. In some

experiments, absolute amounts of these lipids were generated by reference to standard curves (Figure S1). Three technical replicates

were routinely analyzed for each experiment and, unless stated otherwise, data are presented as means SD of three biological

replicates.
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Measurement of PI(3,4)P2 and PI(4,5)P2

Sample Preparation

Lipids were extracted and derivatized with TMS-diazomethane; we added 2 M TMS-diazomethane in hexane (50 ml) to lipid extracts

prepared as described above (approx I mL of ‘lower phase’), to give a yellow solution, and then allowed the reaction to proceed for

10 min, RT. We quenched reactions with glacial acetic acid (6 ml), which removed the sample’s yellow color (this reaction releases N2

gas, thus care should be taken). We added post-derivatisation wash solution (700 ml) to the organic solution, and mixed the samples,

which we then centrifuged (5000 rpm, 3 min), and collected the resultant lower phase. We repeated the wash step, and then added

MeOH:H2O (9:1 v:v, 100 ml) to the final collected lower phase. The samples were then dried down under a stream of nitrogen at room

temperature without warming until dry. 160 mLmethanol was then added and sonicated briefly, then left at RT for about 30min prior to

ozonolysis. A C-Lasky ozone generator was used in the following procedure. The unit was set to use air as the oxygen source at a flow

rate of 4 dm3/min and the flow was split after the ozone generator so that approximately 75 to 90% of the flow went to an ozone

destruction unit and the remaining fraction was used to bubble through the solution containing the samples. The power level on

the ozone generator was set to about 60%of themaximum level. The Ozonolysis procedure started by placing the glass sample vials

containing the methylated lipid solutions in an aluminum block which was cooled in an acetone/dry ice bath to a temperature of

about �70�C. Ozone was then bubbled through the solutions for 5 min. Dimethyl sulphide (2 ml) was then added to each sample

and then allowed to warm up to RT. Water (40 ml) was then added to each sample which was then ready to be submitted for analysis

by UPLC, using the following conditions for PI(3,4P)2/PI(4,5P)2 separation:

Solvent A: Water, 0.1% formic acid

Solvent B: (40% acetonitrile/60% methanol), 0.1% formic acid

Column temperature: 60�C
Injection volume 45 ml

Gradient:
Time (min) Flow rate (mL/min) %A %B Curve

0 0.4 30 70

18.99 0.4 30 70 6

19.00 0.4 20 80 1

22.00 0.4 20 80 6

24.00 0.4 0 100 6

29.00 0.4 0 100 6

30.00 0.4 30 70 6

35.00 0.4 30 70 6
QTRAP4000 Mass spectrometer parameters:

Positive mode, Q1 and Q3 unit resolution
CUR 20 CAD Medium

IS 4500 DP 100

TEM 300 EP 10

GS1 18 CE 35

GS2 20 CXP 10

ihe ON
Turbo Spray source
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Transitions:
Analyte Q1 mass (Da) Q3 mass (Da) Dwell (ms)

d6-SA-PIP2-Aldehyde product 935.4 445.3 50

Endogenous SA PIP2-Aldehyde product 929.4 439.3 50

Endogenous SA PI-Aldehyde product 713.38 439.3 50

17:0-20:4 PI-Aldehyde product 699.4 425.3 50
Measurement of PI3P and PI4P
Precisely the same conditions were used for the measurement of PI(3,4)P2 and PI(4,5)P2 described above, except for the following

UPLC-MS condtions:

UPLC Conditions for PI3P/PI4P Separation

Additional sample preparation: Take 40 ml of sample prepared as above and add to 200ml 70% methanol /30% water. Inject 5 ml

Column: ACE Excel 2 C18-Amide, 150 mm x 0.5 mm

Solvent A: Water, 0.1% formic acid

Solvent B: (40% acetonitrile/60% methanol), 0.1% formic acid

Column temperature: 60�C

Gradient:
Time (min) Flow rate (ul/min) %A %B Curve

0 10 30 70

5 10 30 70 6

10 10 22 78 1

35 10 22 78 6

36 10 0 100 6

45 10 0 100 6

46 10 30 70 6

60 10 30 70 6
Mass spectrometer parameters as above.

Transitions:
Analyte Q1 mass (Da) Q3 mass (Da) Dwell (ms)

d6-SA-PIP-Aldehyde product 827.4 445.3 50
[33]P-Pi Labeling of Mcf10a Cells
We added 0.1 mL of 1.5 M NaCl to 1 mL of [33]P-Pi and then diluted this mixture into a phosphate-depleted medium (GIBCO) and

supplemented with (20 mM HEPES, 1% Dialysed FBS, 500 ng/mL hydrocortisone, 100 ng/mL cholera toxin) to reach a final concen-

tration of 250 mC/mL. After siRNA transfection, as described above, cells were starved for 16 hr, then washed twice with phosphate-

depleted medium before adding the [33]P-Pi–containing medium for 90 min. Then we stimulated the cells with 10 ng/mL hEGF. We

aspirated the medium then stopped the reaction with ice-cold 1 M HCl. We extracted and deacylated the lipids, and analyzed the

glycerophoinositides by strong anion-exchange chromatography (Guillou et al., 2007).

In Vitro Phosphatase Assay
Mcf10a cells (1x106) were seeded in 10 cm tissue culture dishes and grown for 64 hr, then washed twice with ice-cold PBS prior to

lysis with 1mL of lysis buffer (10mMTris pH7.4, 1.5mMMgCl2, 5mMKCl, 1mMDTT, anti-proteases (1 tablet Roche inhibitor cocktail
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per 50 mL lysis buffer)) on ice. Cells were then scraped on ice, collected in 2 mL safe lock Eppendorf tubes, vortexed, and kept on ice

for 5min. The lysate was sonicated on ice (43 10 s; probe sonication) and then ultracentrifuged (40,000 x g for 30min at 4�C). A 50 mL

aliquot was taken for subsequent protein analysis and this, along with the remainder of the sample, were snap frozen in liquid N2 and

stored at�80�C. Protein determination was performed on the 50 mL aliquots. The remainder of each sample was then thawed and all

samples normalized to the same protein concentration with lysis buffer. The lysates were then divided into 100 mL aliquots and frozen

at �80�C. For in-lysate phosphatase assays, a 100 mL aliquot was thawed on ice, then an aliquot containing 4 mg of protein was

diluted to 20 mL with a solution containing 2mg/mL of BSA, 160mMKCl, 1 mMMgCl2, 20mMHEPES pH7.3 and 1mMEGTA. These

20 mL aliquots of cytosol were then used directly in the phosphatase assays, see below.

Micelles consisting of a mixture of lipids and a d6-phosphoinositide substrate were prepared at RT as follows. A lipid solution con-

taining liver PI, brain PE, brain PC, brain PS, sphingomyelin, cholesterol, brain PI(4,5)P2 and either d6-C18:0/C20:4-PI(3,4)P2 or, d6-

C18:0/C20:4-PI(3,4,5)P3, was prepared in a glass vial at 32.4:23.2:10.5:23.7:2.6:0.9:2.9:3.7 (w/w) ratio (all lipids in their respective

solvents) and solvents evaporated under vacuum. In order to reconstitute the lyophilized lipid mixture into micelles, 200 mL of a so-

lution containing 20mMHEPES pH7.3, 0.1 mMEDTA and 1mMEGTA was added and the lipid solution bath sonicated for 1 min and

divided into 20 mL aliquots.

A 20 mL aliquot of diluted cell lysate was then added to 20 mL micellar solutions and incubated at 30�C for the indicated times. Re-

actionswere terminated by the addition of 1mL ice-cold 20% trichloroacetic acid (TCA), followed by centrifugation (13,000 x g, 5min,

4�C) and a single wash with 5% TCA. Samples were then incubated on ice for 5 min, centrifuged (13,000 x g, 5 min, 4�C) and the

supernatant aspirated. The resultant pellet was then processed for lipid analysis as described for cell pellets, see above.

Invadopodia Assay
Slides and Cells Preparation

Prior to the experiment, 13mm coverslips were pre-coated with gelatin enriched with fluorescently labeled Oregon Green 488 gelatin

(Martin et al., 2012). Mcf10a cells were grown for 6 days in complete medium supplemented with 10 ng/mL rhTGF-b1. 5x104 cells

were seeded in complete medium on the fluorescent gelatin surface and left to adhere (between 2-2.5 h). Next, cells were washed

with PBS, starved for 4 hr, and then stimulated with 20 ng/mL hEGF for another 6 hr. Both complete and starvation media were sup-

plemented with 10 ng/mL rhTGF-b1. After washing with PBS and fixing in 3.7% PFA (15 min at RT), cells were labeled for cortactin

following a previously described protocol (Gligorijevic et al., 2014) and the nuclei (Hoechst dye, 0.8 ng/mL added to a PBS wash).

Invadopodia Imaging and Data Analysis

In each experiment, 3 coverslips were prepared per condition. Fixed and labeled cells were imaged using a confocal Nikon A1R mi-

croscope with a 60x oil objective. 15 images were obtained per coverslip with an average of 15 cells per field of view. All cells were

scored for the instances in which cortactin labeling aligned with a hole created in the gelatin and these were then normalized to the

number of nuclei per field of view.

Live Cell Imaging of Mcf10a Cells
Mcf10a cells expressing mCherry-PH-TAPP1 or GFP-PH-GRP1 were imaged by Spinning Disc Microscopy, z = 0.5uM at 37�C and

5% CO2, with a 100x objective.

Mouse Prostate Dissection and Processing
Mice were sacrificed using Schedule 1 methods, in agreement with the Animals (Scientific Procedures) Act 1986 (ASPA) and tissues

rapidly dissected. Prostates, consisting of anterior, ventral, and dorsolateral lobes (one pair of each lobe), were dissected intact and

one set of anterior, dorsolateral, and ventral lobes was used for western blot, while the other set was used for IHC. For western blot

and measurements of phosphoinositides, tissues were rinsed in PBS and flash-frozen in N2(l). For IHC, prostates were rinsed in PBS

and fixed in 4% paraformaldehyde for 1 hr at room temperature. Prostates were then cryo-protected by immersion in 30% w/v su-

crose in PBS, while rotating at 4�C, for 1 hr for WT prostates, and for 2-3 hr for PTEN-KO prostates. Prostates were then immersed in

embedding medium and slowly frozen on dry ice. Embedded prostates were stored at �80�C until use. 12 mm cryosections were

prepared on charged glass slides using a Leica CM1850 cryostat. INPP4B-KO and PTEN-INPP4B-KO prostates were dissected

intact and prepared for measurements of phosphoinositides or for immunofluorescence on site at Akita University.

Mouse Prostate Imaging
H&E Staining

H&E staining of prostate cryosections prepared on glass slides was performed using Mayer’s hematoxylin and Eosin Y solutions,

following a standard protocol. Images were acquired using a Zeiss Laser Microdissection microscope (20x or 40x air objectives),

stitched with AxioVision4 software (5% overlap) and gaps automatically filled with Adobe Photoshop. Alternatively, an Olympus

BX41 microscope equipped with a 40x oil objective was used to obtain higher resolution images. These were then manually stitched

using Velocity software with a brightness correction.

Immunofluorescence

12 mmmouse prostate cryosections prepared on glass slides were stained for PI(3,4)P2 by permeabilising the sections with saponin

(30 min at RT in 0.5% saponin, 1% BSA in PBS). Cells were labeled with the anti-PI(3,4)P2 antibody at 1:150 dilution for 2 hr at room
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temperature, then sections were washed 3 times with PBS and incubated with streptavidin-Alexa Fluor 674 for 1 hr at room temper-

ature, in a humid dark room. In some experiments, an additional incubation with anti-phospho-Akt-S473 antibody was carried out

according to the manufacturer’s instructions (Cell Signaling Technologies). After having washed the sections three times with

PBS, sections were incubated in PBS supplemented with Hoechst dye for 10 min; after 3 washes with PBS, sections were then

mounted with a hard-set medium. Sections were imaged with a wide field Nikon Live Cell Imager microscope and 20x air objective.

Multiple fields of view were stitched automatically with 10% overlap using NIS-Elements software integrated with the microscope.

HPLC-MS Measurement of Mouse Prostate Phophoinositides
Unpublished work from our laboratories had indicated that the most predominant molecular species of PI(3,4,5)P3 and PI(3,4)P2

which accumulate in mouse prostate on deletion of PTEN were the shorter chain, more saturated species. We therefore used a

new HPCL-MS method (manuscript in preparation) to analyze 17 different species of phosphoinositides in this tissue and present

results for the combined total of all species measured (C32:0; C32:1; C34:0; C34:1; C34:2; C36:0; C36:1; C36:2, C36:3; C36:4;

C38:3; C38:4; C38:5; C38:6; C40:4; C40;5; C40:6). Data were corrected for wet weight of tissue. At least three individual mice

were used per genotype.

Mathematical Modeling
A range of mathematical models were built and analyzed in COPASI (Hoops et al., 2006). Themodels included the activation of EGFR

by EGF, its effect on Class I PI3K activity, the phosphorylation and dephosphorylation PI(4,5)P2, PI(3,4)P2 and PI(3,4,5)P3. Reactions

were modeled using mass-action or Michaelis-Menten kinetics (see Data S1, S2, and S3). PI-103 inhibition was represented as

affecting the concentration of effective PI3K, while knockdown and knockout were implemented as modifications of rate constants

for the corresponding enzymes. The final model was parameterized using all the available datasets, using a genetic algorithm. The

complete model is provided in the COPASI format as Data S1, and in the standard format SBML (Hucka et al., 2003) as Data S2. The

accession number for the mathematical model created in this manuscript is BioModels: MODEL1704190000 (Le Novère et al., 2006).

Statistics
Unless stated otherwise, data are means ± SEM of at least three biological replicates, *p < 0.05, **p < 0.01, ***p < 0.005, and

****p < 0.0001. For the invadopodia assay in Mcf10a clones (Figure 6D), Tukey’s multiple comparisons test was used (with p values

of p < 0.05, p < 0.01, p < 0.001 and p < 0.0001 corresponding to 1-4 stars on the graph).

Experimental Design
A strategy for randomization, stratification or blind selection of samples has not been carried out. Sample sizes were not chosen

based on pre-specified effect size. Instead, multiple independent experiments were carried out using several sample replicates

as detailed in the figure legends.
e10 Molecular Cell 68, 566–580.e1–e10, November 2, 2017


	PTEN Regulates PI(3,4)P2 Signaling Downstream of Class I PI3K
	Introduction
	Results
	A Method to Measure PI(3,4)P2 and PI(4,5)P2 by HPLC-MS
	Identification of the Major Phosphatases Controlling PI(3,4,5)P3 and PI(3,4)P2 Accumulation in EGF-Stimulated Mcf10a Cells
	PI(3,4,5)P3 and PI(3,4)P2 Accumulate in the Plasma Membrane of EGF-Stimulated Mcf10a Cells
	The Accumulation of PI(3,4)P2 in EGF-Stimulated Mcf10a Cells Is Class I PI3K Dependent
	PTEN Directly Dephosphorylates PI(3,4)P2 in Mcf10a Cytosol
	PI(3,4)P2 Accumulation in EGF-Stimulated Mcf10a Cells Correlates with the Activation of AKT and Increased Numbers of Invado ...
	PTEN Regulates PI(3,4)P2 Accumulation in a Mouse Model of Prostate Cancer
	PTEN Regulates PI(3,4)P2 Accumulation in Human Cancer Cell Lines

	Discussion
	Supplemental Information
	Author Contributions
	Acknowledgments
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Mice
	Sample Size Estimation
	How Subjects/Samples Were Allocated to Experimental Groups
	Gender of Subjects or Animals
	Health/Immune Status
	Whether Subjects Were Involved in Previous Procedures
	Whether the Subject Is Drug or Test Naive
	Husbandry Conditions of Experimental Animals
	Housing Conditions of Experimental Animals

	Cell Lines
	Human Tissue (Platelets)

	Method Details
	Preparation of Platelets for PI(3,4)P2 Measurement
	siRNA Suppression
	Gene Editing of Mcf10a Cell Lines Using CRISPR/Cas9
	Generation of Mcf10a Cells Stably Expressing Fluorescent Reporters
	Western Blot
	Mcf10a
	Mouse Tissues

	Lipid Extraction
	Measurement of PI(3,4)P2 and PI(4,5)P2
	Sample Preparation

	Measurement of PI3P and PI4P
	UPLC Conditions for PI3P/PI4P Separation

	[33]P-Pi Labeling of Mcf10a Cells
	In Vitro Phosphatase Assay
	Invadopodia Assay
	Slides and Cells Preparation
	Invadopodia Imaging and Data Analysis

	Live Cell Imaging of Mcf10a Cells
	Mouse Prostate Dissection and Processing
	Mouse Prostate Imaging
	H&E Staining
	Immunofluorescence

	HPLC-MS Measurement of Mouse Prostate Phophoinositides
	Mathematical Modeling
	Statistics
	Experimental Design




